e .
‘ot
- AMSAA

TECHNICAL REPORT NO.TR-652

AMSAA RELIABILITY GROWTH GUIDE

SEPTEMBER 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND 21005-5071



DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army
position unless so specified by other official documentation.

WARNING

Information and data contained in this document are based on the input available at the time of
preparation. '

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of
the use of such commercial hardware or software. The report may not be cited for purposes of
advertisement.



-

RN

REPORT DOCUMENTATION PAGE OMD N e 138

~ Public reponiing burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and mainwaining the

data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this vollection of information, including suggestions for reducing
the burden 10 Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 2000 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AMSAA Reliability Growth Guide

6. AUTHOR(S)

William J. Broemm, Paul M. Ellner, W. John Woodworth

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Director REPORT NUMBER

U.S. Army Materiel Systems Analysis Activity TR-652

392 Hopkins Road ]
Aberdeen Proving Ground, MD 21005-5071

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
DireCtOT AGENCY REPORT NUMBER
U.S. Army Materiel Systems Analysis Activity

392 Hopkins Road

Aberdeen Proving Ground, MD 21005-5071

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT . ) 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED . A

-13. ABSTRACT (Maximum 200 words)

Reliability growth is the improvement in a reliability parameter over a period of time due to changes in product design or the
manufacturing process. It occurs by surfacing failure modes and implementing effective corrective actions. Reliability growth
management is the systematic planning for reliability achievement as a function of time and other resources, and controlling the
ongoing rate of achievement by reallocation of these resources based on comparisons between planned and assessed reliability
values. To help manage these reliability activities throughout the development life cycle, AMSAA has developed reliability
growth methodology for all phases of the process, from planning to tracking to projection. The report presents this methodology
and associated reliability growth concepts.

14. SUBJECT TERMS {S. NUMBER OF PAGES
16. PRICE CODE
17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
REPORT OF THIS PAGE OF ABSTRACT S AME AS REPORT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI $td. Z39-18 | 298-1




THIS PAGE INTENTIONALLY LEFT BLANK.



.

CONTENTS

Page
LIST OF FIGURES ..ottt ae s sa et ss s s etsetsebestestenness e v
LIST OF TABLES ..ottt ettt ettt sa e aevesbeeae s sesbesseasenas vi
ACKNOWLEDGEMENTS ..ottt ettt ste v v eb e Vil
INTRODUCTION ...oooiiiiiiiitceteiet ettt ettt b ettt stesteebe et e besbesbe s e s eresrenns 1
L L FOTEBWOTA . ..ttt ettt sttt e b et e e s b e aesnnaaaesneeneesnas 1
L1 L WY ettt st sttt st aaesr e eae e aeetaeneas 1
LL1.2 WRAE .ottt sttt sb e s resbeeas et 1
L3 LAYOUL oottt sttt ettt r e s e teennas 1
1.2 SCOPE ettt PPV PROTRRPRUPPTOURPPRUOO 1
1.2.1 PUIPOSE ...vovinererereeererereeeieeereereee v enereenes ettt et ettt ranas 1
1.2.2 APPLICALION ..ottt ettt s b sb et sa b 2
1.3 Definition Of TEIMS ....cveoeiiiiiiiieeieetesie et a e sa e a et ebe s esnessere s 2
1.3.1 REHADIIILY ..oveiviiiiiieeiecccecec ettt et ve e nas 2
1.3.2 Reliability Growth . .....c.ccooiviiiinniiinnnne, erereente e es e s et e bt eaebeneatens 2
1.3.3 Reliability Growth Management . .........c.cccceveeierieneeeeeeeiecrese e eeeneneas 2
L34 REPAIL .ottt e et a s st ta st e b st sbessasnennenessannaneas 2
13,5 FiX . ettt ettt et et e st et ene b stennes 2
Li4 OVEIVIEW . .oeiiiiiiiiiiiieieite et erte et e s ettt e sate e e e s ea e e s e bt e e e asabbaeessesaseasnnsaesansreesnnsesansseens 2
1.4.1 Benefits of Reliability Growth Management .............ccccoevvveevecrerecnnnnnnne. 2
1.4.2 Sketch of Reliability Growth Management ...............c..ccccoeoiieiiiiiicincnn, 3
1.4.3 Management's ROIE .........ccooiiiiiiiiiiiceccece et 3
1.4.4 Basic Reliability ACHIVITIES . ...cccevreeiiinrieneenrinineeeeenee e eiesee e 4
1.4.5 Reliability Growth Process ........cccooveveeiieeciiiiiiiieceeeceeeee e 4
1.4.6 Reliability Growth Management Control Processes.........cocovvviciiiniienns 6
1.4.7 Factors Influencing Growth Curve Shape ..., 8
1.4.8 Reliability Growth CONCEPLS .........veeeeeeeeeeeereereerereeeeereserernenes e, 13
149 PIANNING ..oveoviiviotiiieierieieie sttt et et e et e s tae e e sressaeaenseere e e 14
1.4.10 TTACKING .ooveiviriiieieiciec ettt ettt sn e ebeasenn s 15
1.4. 11 PrOJECHION ..ooviiiniiiciieiiiiieie ettt free et eeaesn b ess s e b asaenn s 16
REFERENCES .....ccooniiiiniiieieieinieiinsiessssessineisssssis s ssessessesse s sssssssssesessensensenens L 1
RELIABILITY GROWTH PLANNING ......ccocoiiiiieieienevenesesesesesee st stenese v nenes 18
2.1 System Level PIanning ..........ccoovveeviniiininiineinerereeieree e ss s e 18
2.1.1 INtFOQUCLION ...veviviiiieienieiceieeteet ettt v v v be e etestesae s as et e 18
12.1.2 BaCKZIOUNA ......ooiiiiiiiiiiiciciciceseeiee ettt ettt a et 18
2.1.3 Reliability Growth Operating Characteristic (OC) Analysis ............c......... 22
2.1.4 APPLICALION ...ttt n e 27
2.1.5 SUMMATY .coviiitiiiiiieiier ettt e seb e et e st sebeeraesenesaeeneenas 30
2.2 Subsystem Level Reliability Growth Planning ...........ccccoooveiiiiiiiiiinieiccene, 31
2.2.1 Subsystem Reliability Growth . ...........ccooooiiiiiiii e 31
2.2.2 SSPLAN Methodology . ....cccovveiiiiiiiiicieecreeee et 34
REFERENCES ... .ottt b e e v bseveereeseereereeseebeeteseens 47

1ii



CONTENTS (Continued)

Page
RELIABILITY GROWTH TRACKING .....cccoctiiiireinietetineceereeereeveeeeneeseereessenens 48
3.1 INrOUCHION ..ottt e 48.
3.1.1 Definition and Objectives of Reliability Growth Tracking ...................... 48
3.1.2 Managerial RoIe .......c.cceieiriiiiiiiiicieieceese et 48
3.1.3 Types of Reliability Growth Tracking Models ............cccovvvvrrerrverecnenennn. 49
3.1.4 Model SUDSHIULION ...o.eeveneeeieriiiiieiieieeitisienieeseesveesteeste e sreene st veenneas 49
3.2 System Level Reliability Growth Tracking Models .........cccocevevrieiivnnninvenieccvennenne. 51
3.2.1 Continuous Tracking Models ...........cccoeeerieiiniiniinicninininineeseseesenenas 51
3.2.2 AMSAA Discrete Tracking Model ..........ccocoevveveinenieiineneeeeeeeeeecee 71
3.3 Subsystem Level Reliability Growth Tracking Models ...........cccoevveereereceereerenrenenn, 79
3.3.1 AMSAA SSTRACK Model Description and Conditions For Usage ........ 79
3.3.2 MethOdOIOZY ...coceveiiimiiiiieeeteee ettt sre e s sae e re st 80
3.3.3 Lindstrom-Madden Method ...........c.cccoceiiiniiciinniiniinienteneescesesiesneeas 82
334 EXAMPLE ..ot 83
REFERENCES ..ottt sttt stete e e sressn s s e e e esesssasssessessesssns IR 86
RELIABILITY GROWTH PROJECTION ......cooiviiiiiiinireeienieeeenir et 87
4.1 Reliability Projection Concepts and Methodology ..........cccceeevieenercnirinveniennnnn. 87
4.2 Basic Concepts, Notation and ASSUMPLIONS ........ceceeveeeverenieereenenenieninseeessasseseseens 89
4.3 Crow/AMSAA Reliability Projection Model ...........cccoceeeiniiiviincincinieceeecieneene 90
4.3.1 INtrodUCHON ...c..oocviviiriciiiicririenrcrtereete st sees st esreesaestesaeseeensesseensessesnnens 90
4.3.2 Crow/AMSAA Model Notation and Additional Assumptions .................. 91
4.3.3 Crow/AMSAA Model Equations and Estimation Procedure .................... 92
4.3.4 Reliability Growth Potential ........c..ccooceoviiiiiiinieinicieciecsieceeeeneee 101
4.3.5 Use of the Maximum Likelihood Estimator versus the Unbiased
| SE8 14 F:100) o 1) ol C SOOI 101
4.3.60 EXAMPIE ...ooovieiiiiriiiiiriecrteiecreee sttt st 107
4.4 The AMSAA Maturity Projection Model (AMPM) - Continuous ........c..ccceceeueenee. 110
4.4.1 INtrOdUCHION ...eouereirrririeieieienteie ettt ere et sre st ste b e b r e enes 110
4.4.2 AMPM Notation and ASSUMPLIONS .......ccceevvereerreereencemeerenresrenenreeeieneens 112
4.4.3 AMPM DeVEIOPIMIENL ......ccoociiciieiiiiiii it reee et 115
4.4.4 Limiting Behavior of AMPM ..........cccoviuiviimeeieeieieeeeeeie e rsee s 121
4.4.5 Estimation Procedure for AMPM ........cccooiiiiiiiiiiiiiiiccciccccienccneen 124
4.4.6 EXAMPIE ...c.covviiiiriiieiiiiiirenresesiesinseeseesseseesseesseseesseeseessessesnesneensensennenee 129
REFERENCES ..ottt eteste e e testessees e ne et e s s se et estesbeetessesbesneentensennesnennees 133
APPENDIX A — BACKGROUND.........cootitititeieneneetetenrenste e eveosssreenesresnesae s A-1
APPENDIX B — TABLES FOR SECTION 2 .....oooiiviiiincrreeeneeeesest e B-1
APPENDIX C -~ DERIVATIONS FOR SECTION 2 ......coceiviiiniiiiniiiieccrniiicnnne C-1
APPENDIX D — DERIVATIONS FOR SECTION 4 .......cocviiiiiiciiniiineic D-1
APPENDIX E — DISTRIBUTION LIST ...oooiiiiiiieieeeeiereeteceeeteeeee e E-1

v



Figure No.

Section 1
1

O 00 O W bW

10
11
12
13
14

Section 2
1

w» A WN

Section 3
1

Wk W

@)

8

10 .
Section 4

1

2

3
4

LIST OF FIGURES

Title PAGE
Reliability Growth Feedback Model..........ccccooceeiviiiiiiiiniiineeeiee 5
Reliability Growth Feedback Model with Hardware ................c........... e 5
Reliability Growth Management Model (Assessment) ...........ccccceevveeeieenennen. 6
Example of Planned Growth and Assessments .........c.ccoceveverveviesiecrenesniennenn, 7
Reliability Growth Management Model (Monitoring) ............ccecevveevennennnnnnn. 8
Graph of Reliability in a Test-Fix-Test Program .......c.cc.coccovvevninennivnnennns 10
Graph of Reliability in a Test-Find-Test Program ...........cccccocvvvnenierennnne. 10
Graph of Reliability in a Test-Fix-Test Program with Delayed Fixes ........... 11
The Nine Possible General Growth Patterns for Two Test Phases ................ 11
Comparison of Growth Curves Based on Test Duration vs Calendar Time... 13
Development of Planned Growth Curve on a Phase by Phase Basis ............. 14
Global Analysis Determination of Planned Growth Curve ..........ccccceeueeeenn. 15
Reliability Growth Tracking Curve .........ccccooeeviiviniiininiiniieeereee e, 16
Extrapolated and Projected Reliabilities .......c..cocvevereineniienieninninrene e, 16
Example OC Curve for Reliability Demonstration Test ..........ccccceeveriennnnnn. 21
Idealized Reliability Growth CUrve ..........cccccoeiiiiiiiiiiiiniiicccecceeeieeee, 27
Program and Alternate Idealized Growth Curves ........cc.ccccceovrvenvinenivnenannn. 28
Operating Characteristic (OC) CUIve ........ccccceeceiviiiniienieccienie e 29
Reliability Growth Based on AMSAA Continuous Tracking Model ............ 37
Failure Rates Between Modifications ...........cccccvevivieniieieiienieiiceie i 53
Time Line for Phase 2 (t in first time interval) ..........cccccoeoveviiiniciiieeee 53
Time Line for Phase 2 (t in second time interval) ... 53
Parametric Approximation to Failure Rates Between Modifications ............ 55
Test Phase Reliability Growth Based on AMSAA Continuous Tracking
MOAEL ..ot 56
Estimated Intensity Function Superimposed on Average Failure Rate
Plot from Observed Data ..........cccocoviiiiiiiniiieiesice e 66
Estimated MTBF Function with 90 Percent Interval Estimate at T=300
HOUTS vttt 67
Test Data for Grouped Data Option ..........cceceveeienieeieneeie e 77
Estimated Failure Rate by Configuration .........c.cccocevceveniiiniininiieniennenienne 78
Estimated Reliability by Configuration ................ OO 79
Observed Versus Estimate of Expected Number of B-Modes ..................... 131
Extrapolation of Estimated Expected Number of B-Modes As Function
Of K et 131
Projected MTBF for Different K’s .........cccociiiininiiiiiiceeiee 132
Estimated Fraction of Expected Initial B-Mode Failure Intensity Surfaced
for DIfferent K's ...ooveiiiiiiicieceet et 132



LIST OF TABLES

Table No. Title PAGE
Section 2, Appendix B
Tables for 70 Percent Confidence ...........ccocuverercevceneninnnseceiivnveneeereenennn, B-3
Tables for 80 Percent Confidence ...........cccoeeveeeeceenennnineecienenienrennenn, B-16
Tables for 90 Percent Confidence ...........ccceeveveeceeieninenciinienrereecreeeeeenen. B-29
Section 3 ‘
1 Lower (L) and Upper Coefficients for Confidence Intervals for MTBF
From Time Terminated Reliability Growth Test ..........c.cccoveevveveevvevvieneeennnn, 60
2 Lower Confidence Interval Coefficients for MTBF from Time Terminated
Reliability Growth Test .................. e e s r e s a e s be et e te e s s e beens 62
3 Critical Values for Cramer-Von Mises Goodness-of-Fit Test for
Individual Failure Time Data .........cc.ccceeirvieieiinienneeniennnneeneseesese e 64
4 Test Data for Individual Failure Time Option .........cccccevevnvincenercenenennennnn. 65
5 Test Data for Grouped Data Option .........ccccoveveeinveenrenerneeneneenenenieesreseennes 71
6 Observed Versus Expected Number of Failures for Test Data for Grouped
‘ OPLIONL ..ottt sttt et esbe st e st e sbe s s s sae s be s seesbeesseseseenseeneeens 71
7 Test Data for Grouped Data OpLion ......ccccocerveererreerneinriersenirieseeeesieeseeeeens 77
8 Estimated Failure Rate and Estimated Reliability by Configuration ............. 77
9 Table of Approximate Lower Confidence Bounds (LCBs) for Final
CONFIGUIALION .....oviiiiiiiriineeie ettt et sn s en e snes 79
10 SUbSYSLEM StAtISHICS .oueevvereeeiirriirieiererte ettt se e see e s ee s 84
11 System Approximate Lower Confidence Bounds (LCBS) .......cccocvvverrveiennene 85
Section 4
1 Projection Example Data ..........ccccooiiiiiieniieiicnenencrceeeccseeeeie e 108

vi



ACKNOWLEDGEMENTS

The U.S..Army Materiel Systems Analysis Activity (AMSAA) recognizes the
following individuals for their contributions to this report

A

The authors are:
William J. Broemm

Paul M. Ellner
W. John Woodworth

vii



THIS PAGE INTENTIONALLY LEFT BLANK.



AMSAA RELIABILITY GROWTH CUIDE

1. INTRODUCTION

1.1  Foreword. This guide provides methodology and concepts to assist in reliability
growth planning and a structured approach for reliability growth assessments. The
planning aspects, which are covered in Section 2 of this guide, address the planned
growth curve and related milestones. The assessment techniques, which are designed to
realistically evaluate reliability in the presence of a changing configuration, are based on
demonstrated and projected values and are covered in Sections 3 and 4, respectively. The
material in this guide updates MIL-HDBK-189 [1].

1.1.1 Why. Reliability growth management procedures were developed to help
guide the materiel acquisition process for new military systems. This process is usually
complex and difficult for many reasons. Generally, these systems require new
technologies and represent a challenge to the state of the art. Moreover, the requirements
for reliability, maintainability and other performance parameters are usually highly
demanding. Consequently, striving to meet these requirements represents a significant
portion of the entire acquisition process and, as a result, the setting of priorities and the
allocation and reallocation of resources such as funds, manpower and time are often
formidable management tasks.

1.1.2 What. Reliability growth management procedures address the priorities
and allocation problem. These techniques will enable the manager to plan, evaluate and
control the reliability of a system during its development stage. The reliability growth
concepts and methodologies presented in this guide have evolved over the last couple of
decades by actual applications to Army, Navy and Air Force systems. Through the
application of these reliability growth techniques significant payoffs can be realized from
the resulting effective management of attaining system reliability goals.

1.1.3 Layout. This guide is written for both the manager and the analyst.
Generally, the further into the guide one reads, the more technical and detailed the
material becomes. The fundamental concepts are covered early in the guide and the
details regarding the implementation of these concepts are discussed primarily in the
latter sections. This format, together with an objective for as much completeness as -
possible within each section, have resulted in some concepts being repeated or discussed
in more than one place. This should help facilitate the use of the guide for studying
certain topics without extensively referring to previous material.

1.2 Scope.

1.2.1 Purpose. This guide provides an understanding of the concepts and
principles of reliability growth, advantages of managing reliability growth, and guidelines
and procedures to be used in managing reliability growth. It should be noted that this
guide is not intended to serve as a reliability growth plan to be applied to a program
without any tailoring. This guide, when used in conjunction with knowledge of the



system and its development program, will allow the development of a reliability growth
management plan that will aid in developing a final system that meets its requirements
and lowers the life cycle cost of the fielded systems.

1.2.2 Application. The guide is intended for use on systems/equipment during
their development phase by both producer and customer personnel.

o

1.3 Definition of Terms.

1.3.1 Reliability. Reliability is the probability that an item will perform its
intended function for a specified interval under stated conditions. The term “specified
interval” refers to the length of the mission as described in a mission profile. The term
“stated conditions” refers to the complete definition of the scenario in which the system
will operate. These conditions should reflect operational usage.

1.3.2 Reliability Growth. Reliability growth is the improvement in a reliability
parameter over a period of time due to changes in product design or the manufacturing
process. )

1.3.3 Reliability Growth Management. Reliability growth management is the
systematic planning for reliability achievement as a function of time and other resources,
and controlling the ongoing rate of achievement by reallocation of resources based on
comparisons between planned and assessed reliability values.

1.3.4 Repair. A repair is the replacement of a failed item with an “identical”
item in order to return the item to its mission.

1.3.5 Fix, A fix is a corrective action that results in a change to the design or to
the manufacturing process of the item for the purpose of improving its reliability.

14 Overview.

1.4.1 Benefits of Reliability Growth Managemeﬁt. The following benefits can
be realized by the utilization of reliability growth management.

1.4.1.1 Finding Unforeseen Deficiencies. The initial prototypes for a complex
system with major technological advances will invariably have significant reliability and
performance deficiencies that could not be foreseen in the early design stage. This is also
true of prototypes that are “simply” the integration of existing systems. Unforeseen
problems are the norm in achieving seamless interoperation and interfacing between
already developed systems. Reliability growth testing will surface these deficiencies.

1.4.1.2 Designing in Improvement through Surfaced Problems. Even if some
potential problems can be foreseen, their significance might not. Prototypes are subjected
to a development testing program to surface those problems that drive the failure rate so
that the necessary improvements in system design can be made. The ensuing system



)

reliability and performance characteristics will depend on the number and effectiveness
of these fixes. The ultimate goal of the development test program is to meet the system
reliability and performance requirements.

1.4.1.3 Reducing the Risk of Final Demonstration. Experience has shown that
programs that rely simply on a final demonstration by itself to determine compliance with
the reliability requirements do not, in many cases, achieve the reliability objectives within
the allocated resources. Emphasis on reliability performance prior to the final
demonstration using quantitative reliability growth could substantially increase the
chance of passing, or even replace a final demonstration.

1.4.1.4 Increasing the Probability of Meeting Objectives. This can be
achieved by setting interim reliability goals to be met during the development testing
program and the necessary allocation and reallocation of resources to attain these goals.
A comprehensive approach to reliability growth management throughout the
development program organizes this process.

1.4.2 Sketch of Reliability Growth Management. The essence of reliability
growth management consists of planning, evaluating and controlling the growth process.

1.4.2.1 Reliability Growth Planning. Reliability growth planning addresses
program schedules, amount of testing, resources available and the realism of the test
program in achieving the requirements. The planning is quantified and reflected in the
construction of a reliability growth program plan curve. This curve establishes interim
reliability goals throughout the program.

1.4.2.2 Reliability Growth Assessment. To achieve these goals it is important
that the program manager be aware of reliability problems during the conduct of the
program so that he can effect whatever changes are necessary, e.g., increased reliability
emphasis. It is, therefore, essential that periodic assessments of reliability be made
during the test program (usually at the end of a test phase) and compared to the planned
reliability growth values.

1.4.2.3 Controlling Reliability Growth. These assessments provide visibility of
achievements and focus on deficiencies while there is still time to affect the system
design. By making appropriate decisions with regard to the timely incorporation of
effective fixes into the system commensurate with attaining the milestones and
requirements, management can control the growth process.

1.4.3 Management's Role. The various techniques associated with reliability
growth management do not, in themselves, manage. They simply make reliability a more
visible and manageable characteristic. Every level of management can take advantage of
this visibility by requesting reliability growth plans and progress handbooks for review.
Without this implementation, reliability growth cannot truly be managed.



The planned growth curve and milestones are only targets. They do not imply
that reliability will automatically grow to these values. On the contrary, these values will
be attained only with the incorporation of an adequate number of effective design fixes
_into the system. This requires dedicated management attention to reliability growth. The
methods in this guide are for the purpose of assisting management in making timely and
appropriate decisions to ensure sufficient support of the reliability engineering design
effort throughout the development testing program.

High level management of reliability growth is necessary in order to have available all

the options for difficult program decisions. For example, high level decisions in the
following areas may be necessary in order to ensure that reliability goals are achieved:

e Revise the program schedule.

e Increase testing.

e Fund additional development efforts.

e Add or reallocate program resources.

e Stop the program until interim reliability goals have been demonstrated.

Although some of these options may result in severe program delay or significant
increase in development costs, they may have to be exercised in order to field equipment
that meets user needs and has acceptable total life cycle costs.

1.4.4 Basic Reliability Activities. Reliability growth management is part of the
system engineering process. It does not take the place of the other basic reliability
program activities such as:

¢ Design predictions

e Apportionment

e Failure modes and effects analysis

e Stress analysis

Instead, reliability growth management provides a means of viewing all the
reliability program activities in an integrated manner. ‘

1.4.5 Reliability Growth Process.

1.4.5.1 Basic Process. Reliability growth is the result of an iterative design
process. As the design matures, it is investigated to identify actual or potential sources of
failures. Further design effort is then spent on these problem areas. The design effort can



be applied to either product design or manufacturing process design. The iterative
process can be visualized as a simple feedback loop as in Figure 1. This illustrates that
there are three essential elements involved in achieving reliability growth:

e Detection of failure sources,

e Feedback of problems identified and

e Redesign effort based on problems identified.

Identified Problems

Detection of __l
Failure Sources

L (Re) Design

Figure 1. Reliability Growth Feedback Model.
Furthermore, if failure sources aré detected by testing, a fourtﬁ element is necessary:
e Fabrication of hardware.
And, following redesi_gn, detection of failure sources serves as:
e Verification of redesign effort.

[dentified Problems

L (Re) Design : ‘Detection of J

Failure Sources

4
Fabrication of
Prototypes\System

(Testing)

Figure 2. Reliability Growth Feedback Model with Hardware.

1.4.5.2 Growth Rate. The rate at which reliability grows is dependent on:
e how rapidly activities in this loop can be accomplished,

e how significant the identified problems are, and



e how well the redesign effort solves the identified problems without
introducing new problems.

Any of these activities may act as a bottleneck. The cause and degree of the
bottleneck may vary from one development program to the next, and even within a single
program may vary from one stage of development to the next.

1.4.6 Reliability Growth Management Control Processes. Figures 1, 2, 3, and
5 illustrate the growth process and associated management processes in a skeleton form.
This type of illustration is used so that the universal features of these processes may be
addressed. The representation of an actual program or program phase may be
considerably more detailed. This detailing may include specific inputs to, and outputs
from, the growth process, additional activity blocks, and more explicit decision logic
blocks.

1.4.6.1 Basic Methods. There are two basic ways that the manager evaluates the
reliability growth process. The first method is to utilize assessments (quantitative
evaluations of the current reliability status) that are based on information from the
detection of failure sources. The second method is to monitor the various activities in the
process to assure himself that the activities are being accomplished in a timely manner
and that the level of effort and quality of work are in compliance with the program plan.
Each of these methods complements the other in controlling the growth process.

Identified Problems
> (Re) Design Detection of l
) "| Failure Sources ,
A4
Fabrication of .
Prototypes \ System g (Testing)
Data
Planned Reliability Q:f;sggl‘fy‘“ of
Estimates rojections
Decisions

Figure 3. Reliability Growth Management Model (Assessment).



1.4.6.2 Comparison of Methods. The assessment approach is resuits oriented;
however, the monitoring approach, which is activities oriented, is used to supplement the
assessments and may have to be relied on entirely early in a program. This is often
necessary because of the lack of sufficient objective information in the early program
stages.

1.4.6.3 Assessment. Figure 3 illustrates how assessments may be used in
controlling the growth process. Reliability growth management differs from
conventional reliability program management in two major ways. First, there is a more
objectively developed growth standard against which assessments are compared. Second,
the assessment methods used can provide more accurate evaluations of the reliability of
the present equipment configuration. A comparison between the assessment and the
planned value will suggest whether the program is progressing as planned, better than
planned, or not as well as planned. If the progress is falling short, new strategies should
be developed. These strategies may involve the reassignment of resources to work on
identified problem areas or may result in adjustment of the timeframe or a re-examination
of the validity of the requirement. Figure 4 illustrates an example of both the planned
reliability growth and assessments.

Planned Growth ===w====
Assessed Growth remmmm———————————
agmzzmmmTIoo
Reliability
/
I/"
L Test Phase 1 Test Phase 2 Test Phase 3

Cumulative Units of Test Duration

Figure 4. Example of Planned Growth and Assessments.

1.4.6.4 Monitoring. Figure 5 illustrates control of the growth process by
monitoring the growth activities. Since there is no simple way to evaluate the
performance of the activities involved, management based on monitoring is less
definitive than management based on assessments. Nevertheless, this activity is a
valuable complement to reliability assessments for a comprehensive approach to
reliability growth management. But standards for level of effort and quality of work
accomplishment must, of necessity, rely heavily on the technical judgment of the
evaluator. Monitoring is intended to assure that the activities have been performed within
schedule and meet appropriate standards of engineering practice. It is not intended to
second-guess the designer, e.g., redo his stress calculations. One of the better examples



of a monitoring activity is the design review. The design review is a planned monitoring
of a product design to assure that it will meet the performance requirements during
operational use. Such reviews of the design effort serve to determine the progress being
made in achieving the design objectives. Perhaps the most significant aspect of the
design review is its emphasis on technical judgment, in addition to quantitative
assessments of progress. .
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Figure 5. Reliability Growth Management Model (Monitoring).

1.4.7 Factors Influencing Growth Curve Shape. This section introduces
factors that affect the shape of the growth curve. Such things as the current stage of the
development program, the current test phase, the system configuration under test, the
timing of design change insertion, and the units of measure for test duration all influence
the growth curve’s shape.

1.4.7.1 Stages of the Development Program. Generally, any system
development program is divided into stages having different objectives for each stage.
The names and objectives for each stage in a given development program need not be the
ones given here. These stages are given as representative of a typical development:

e Proposal. There is no hardware at this stage. This is the engineering and
accounting paper analysis of differing proposed solutions and designs. In this
stage the concern is over what are the requirements, can they be met, and if so,
how and at what estimated cost?

e Conceptual. Experimental prototypes are built at this stage. These may bear
little resemblance to the actual system. They are for proof-of-principle.

e Validation. Prototypes much like the final system are built and tested. This
stage tries to achieve the performance and reliability objectives for the system.



e Full Scale Development. Systems built as though they were in production are
tested to work out final design details and manufacturing procedures.

Quantitative reliability growth management can be used during the validation and .
full-scale development stages of the program. It could be argued that the different nature
of the testing going on in these stages is different enough to cause different rates of
growth to occur. How much different the types of testing are determines how they will
be treated in creating the planning growth curve. This will be further discussed in
Section 1.4.7.6. -

1.4.7.2 Test Phases. Within a development stage it is quite likely that testing
will be broken up into alternating time periods of active testing followed by none. Each
period of active testing can be viewed as a testing phase. Also, within a development
stage. it is quite likely that more than one type of testing will be going on (e.g.,
performance testing). If these other tests that are not specifically for reliability follow the
intended operating environment and the intended use stresses well enough, and if design
changes are made on the basis of these tests, then the information gathered may be
incorporated into the reliability growth test data base. These would also be called
reliability growth testing phases. It is to be expected that the reliability will grow from

one phase to the next. The reliability growth planning curve should reflect this.

1.4.7.3 System Configurations. In an absolute sense, any change to the design
of a system constitutes a new configuration. For our purposes, we will term a specific
design a new configuration if there has been one significant design change, or enough
little design changes, that cause an obviously different failure rate for the system. It is
possible that two or more testing phases could be grouped together for analysis based on
the configuration tested in these phases being substantially unchanged. It is also possible
that one design change is so effective at increasing reliability that a new configuration
could occur within a test phase. System configuration decisions can also be made on the
basis of engineering judgement. Obviously, the configuration under test has great
influence on the growth curve.

1.4.7.4 Timing of Fixes. The replacement of a part with another part identical to
the first is termed a repair. Replacing, or eliminating, a part due to a design change is
termed a fix. Fixes are intended to reduce the rate at which the system fails. Repairs
make no change in the failure rate of the system. The time of insertion of a fix affects the
pattern of reliability growth.

1.4.7.4.1 Test-Fix-Test. In an absolutely pure test-fix-test program, when a
failure is observed, testing stops until a design change is implemented on the system
under test. When the testing resumes, it is with a system that has incrementally better
reliability. The graph of reliability for this testing strategy is a series of small increasing
steps, with each step stretching out longer to represent a longer time between failures.
Such a graph can be approximated by a smooth curve. See Figure 6.
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Figure 6. Graph of Reliability in a Test-Fix-Test Program.

Such a pure test-fix-test program is impractical in most situations. Testing is
likely to continue with a repair, and the fix will be implemented later. Nevertheless, if
fixes are inserted as soon as possible and while testing is still proceeding, the stair step
like reliability increases and the shape of the approximating curve will be similar, but rise
at a slower rate. This is due to the reliability remaining at the same level that it was at
when the failure happened until the fix is inserted. Thus the steps will all be of longer
length, but the same height. Continuing to test after the fix is inserted will serve to verify
the goodness of the design change.

1.4.7.4.2 Test-Find-Test. During a test-find-test program the system is also
tested to determine problem failure modes. However, unlike the test-fix-test program,
fixes are not incorporated into the system during the test. Rather, the fixes are all inserted
into the system at the end of the test phase and before the next testing period. Since a
large number of fixes will generally be incorporated into the system at the same time,
there is usually a significant jump in system reliability at the end of the test phase. The
fixes incorporated into the system between test phases are called delayed fixes. See
Figure 7.

Jump due to o
insertion of

Reliability delayed fixes

Measure of Test Duration

Figure 7. Graph of Reliability in a Test-Find-Test Program.

1.4.7.4.3 Test-Fix-Test with Delayed Fixes. The test program commonly used
in development testing employs a combination of the two types of fix insertions
discussed above. In this case, some fixes are incorporated into the system during the test
while other fixes are delayed until the end of the test phase. Consequently, the system
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reliability will generally be seen as a smooth process during the test phase and then jump
- : due to the insertion of the delayed fixes. See Figure 8.

) . Jump due to
insertion of d

delayed fixes {

Reliability /——

Measure of Test Duration

Figure 8. Graph of Reliability in a Test-Fix-Test Program with Delayed Fixes.

1.4.7.5 Combined Influences of Factors on Reliability Growth Curve Shape.
In order to reach the goal reliability, the development-testing program will usually consist
of several major test phases. Within each test phase the fix insertion may be carried out
in any one of the three ways discussed above. As an example, suppose that testing were
conducted during the validation and full-scale development stages of the program. Each
stage would have at least one major test phase, implying a minimum of two major test
phases for the program. In this case, there would be 32 =9 general ways the reliability
may grow during the development test. See Figure 9.

9.1 :
o 92 R 93 /__
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9.6
9.4 o 9.5 . —
Phase 1]  Phase 2 Phase 1| Phase 2 Phase 1| Phase 2
’ 9.7 9.8 9.9
[ ] (-]
Phase 1}  Phase 2 Phase 1§ Phase 2 Phase 1) Phase 2

Figure 9. The Nine Possible General Growth Patterns for Two Test Phases.
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Row 1 shows Phase 1 as having all fixes delayed until the end of the testing phase. Row
2 shows Phase 1 as having some fixes inserted during test and some delayed. Row 3
shows Phase 1 as having all fixes inserted during test, with none delayed. Column 1
shows Phase 2 as having all fixes delayed until the end of the testing phase. Column 2
shows Phase 2 as having some fixes inserted during test and some delayed. Column 3
shows Phase 2 as having all fixes inserted during test, with none delayed.

Figures 9.1 and 9.9 represent the two extremes in possible growth test patterns.
There are some distinct statistical advantages to following a complete test-fix-test
program:

e The estimated value of reliability at any point along the smooth growth curve
1s an instantaneous value. That is, it is not dragged down by averaging with
the failures that accrued due to earlier (and hopefully) less reliable
configurations.

e Confidence limits about the true value of reliability can be established.

e While the impact of the jumps in reliability can be assessed using a mix of
some engineering judgement (this will be discussed in the section on
Reliability Growth Projection) and direct calculation, the estimate of
reliability in a test-fix-test program is based solely on data.

o In a test-fix-test program, the goodness of the design changes is continuously
being assessed in the estimate of reliability.

A development stage may consist of more than one distinct test phase. For
example, suppose that testing is stopped part way through the full-scale development
stage, and delayed fixes are incorporated into the system. The testing in this case may be
considered as two major test phases during this stage, giving three phases for the whole
program. If a program had three major test phases then there would be 3° = 27 patterns
of reliability growth. Obviously this manner of determining the possible number of
growth patterns can be extended to any number of phases.

1.4.7.6 Growth Curve Reinitialization. The differences in the growth curves
between phases shown in Figures 9.5 and 9.6 represent the difference mentioned in the
last paragraph of Section 1.4.7.1. Underlying Figure 9.6 is the assumption that the testing
environment and engineering efforts are the same across test phases, thus the
continuation of the same growth curve into the succeeding phase, after the jump for
delayed fixes. In Figure 9.5 some factor influencing the rate of growth has substantially
changed between the phases, which is reflected in a new growth curve for the succeeding
phase. This 1s called reinitializing the growth curve. It must be emphasized that
reinitialization of a growth curve is only justified if the testing environment is so different
as to introduce a new set of failure modes, or the engineering effort is so different as to be
best represented as a totally new program.

12



1.4.7.7 Shape Changes Due to Calendar Time. Reliability growth is often
depicted as a function of test time for evaluation purposes. For management and
presentation purposes it may be desirable to portray reliability growth as a function of
calendar time. This can be accomplished by determining the number of units of test
duration that will have been completed at each measure point in calendar time and then
plotting the value that corresponds to the completed test duration above that calendar
point. This is a direct function of the program schedule. Figure 10 shows the reliability
growth of a system as a function of test time and calendar time.
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Figure 10, Comparison of Growth Curves Based on Test Duration Vs Calendar
- Time.

1.4.8 Reliability Growth Conc’épts.

1.4.8.1 Levels of Consideration for Growth. Planning and controlling
reliability growth can be divided as to levels of consideration along both a program basis
and an item under test basis.

e Program considerations:

e Global: This approach treats reliability growth on a total basis over the
entire development program.

e Local: The other approach treats reliability growth on a phase-by-phase
basis.

¢ Item Under Test considerations:

e System Level: The entire system as it is intended to be fielded is tested.

13



e Subsystem Level: The obvious meaning is the testing of a major and
_ reasonably complex component of the whole system (e.g., an engine for a
vehicle). Sometimes, the subsystem would seem to be an autonomous
unit, but because the requirement is for this unit to operate in conjunction
with other units to achieve an overall functional goal it is really only part
of “the system” (e.g., radar for an air defense system).

The appropriate level of consideration can be different at different times within
the development. '

1.4.8.2 Analysis of Previous Programs. Analysis of previous similar programs
is used to develop guidelines for predicting the growth during future programs. Such
analysis may be performed on either overall programs or individual program phases, or
both. Of particular interest are the patterns of growth observed and the effect of program
characteristics on initial values and growth rates. The U.S. Army Materiel Systems
Analysis Activity (AMSAA) has conducted a data study, [2], that is a useful guide in
choosing appropriate growth rates for various system types.

1.4.9 Planning.

1.4.9.1 Planned Growth Curve. The planned growth curve is a picture of the
anticipated reliability growth for the entire program. It is an essential part of the
reliability growth management methodology and is important to any reliability program.
This curve is constructed early in the development program generally before hard
reliability data are obtained and is typically a joint effort between the program manager
and contractor. Its primary purpose is to provide management with guidelines as to what
reliability can be expected at any stage of the program and to provide a basis for
evaluating the actual progress of the reliability program based upon generated reliability
data. The planned growth curve can be constructed on a phase-by-phase basis. See
Figure 11.

Analysis of Previous Similar Programs

| __—1 \Planned Growth Curve for New Program
s e Y L O PPN
ProgramT| p— Program U e
¢ :
/__ - — |1 e
Program V Program W /

- Determination of pattern and phase characteristics that influence growth curves.

Figure 11. Development of Planned Growth Curve on a Phase by Phase Basis.
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1.4.9.2 Idealized Growth Curve. An Idealized Growth Curve is a planned
growth curve that consists of a single smooth curve based on initial conditions, an
assumed growth rate, and/or planned management strategy. This curve is a strict
mathematical function of the input parameters across the measure of test duration (e.g.,
time, distance, trials), thus the name “Idealized.” No program can be expected to assume
this exact mathematical ideal shape, but it is useful in setting interim goals. See Figure
12.

Program X ProgramY/ Program Z

| | |

rDetermination of pattern and program characteristics that influence growth curves ]

Specific Idealized Growth Curve

____________
-
-
-
-

Appropriate for this development program
Figure 12. Global Analysis Determination of Planned Growth Curve.

1.4.10 Tracking.

1.4.10.1 Demonstrated Reliability. A demonstrated reliability value is based on
actual test data and is an estimate of the current attained reliability. The assessment is
made on the system configuration currently undergoing test, not on an anticipated
configuration, nor a prior configuration. This number allows for the effects of even
recently introduced fixes into the system as its calculation incorporates the trend of
growth established over the history, to date, of the development program.

1.4.10.2 Reliability Growth Tracking Curve. The reliability growth tracking
curve is the curve that best fits the data being analyzed. It can be based on data solely
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within one phase or data from several phases. Whatever period of testing is used to form
a database, this curve is the statistical best representation from a family of growth curves
of the overall reliability growth of the system. It depicts the trend of growth that has been
established over the database. Thus, if the database covers the entire program to date, the
right end point of this curve is the current demonstrated reliability. See Figure 13.
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Figure 13. Reliability Growth Tracking Curve.
1.4.11 Projection.

1.4.11.1 Extrapolated Reliability. Extrapolating a growth curve beyond the
currently available data shows what reliability a program can be expected to achieve, as a
function of additional test duration, provided the conditions of test and the engineering
effort to improve reliability are maintained at their present levels (i.e., the established
trend continues).

1.4.11.2 Projected Reliability. A reliability projection is an assessment of
reliability that can be anticipated at some future point in the development program. The
projection is based on the achievement to date and engineering assessments of future
program characteristics. Projection is a particularly valuable analysis tool when a
program is experiencing difficulties because it enables investigation of program
alternatives.

Projected —— 1 o, o
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Figure 14. Extrapolated and Projected Reliabilities.
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2. RELIABILITY GROWTH PLANNING
2.1 System Level Planning.
2.1.1 Introduction. The material in Section 2.1 is from Reference [1].

A well thought out reliability growth plan can serve as a significant management tool in
scoping out the required resources to enhance system reliability and demonstrate the system
reliability requirement. The principal goal of the growth test is to enhance reliability by the
iterative process of surfacing failure modes, analyzing them, implementing corrective actions
(fixes), and testing the "improved" configuration to verify fixes and continue the growth process
by surfacing remaining failure modes. If the growth test environment during engineering and
manufacturing development (EMD) reasonably simulates the mission environment stresses then
it may be feasible to use the growth test data to statistically demonstrate the technical, i.e.,
engineering, requirement (denoted by TR) for system reliability. Such use of the growth test
data could eliminate the need to conduct a follow-on reliability demonstration test. The classical
demonstration test requires that the system configuration be held constant throughout the test.
This type of test is principally conducted to assess and demonstrate the reliability of the
configuration under test.

Associated with the demonstration test are statistical consumer and producer risks. In our
context, they are frequently termed the Government and contractor risks, respectively. In broad
terms, the Government risk is the probability of accepting a system when the true technical
reliability is below the TR and the contractor risk is the probability of rejecting a system when
the true technical reliability is at least the contractor's target value (set above the TR). An
extensive amount of test time may be required for the reliability demonstration test to suitably
limit these statistical risks. Moreover, this allotted test time would be principally devoted to
demonstrating the system TR associated with the configuration under test instead of to enhancing
the system reliability through the reliability growth process of sequential configuration

-improvement. In today's austere budgetary environment, it is especially important to make
maximum use of test resources. With proper planning, a reliability growth program can be an
efficient procedure for demonstrating the system reliability requirement while reliability
improvements are being achieved via the growth process. ' :

2.1.2 Background. During a reliability growth test phase, the system configuration is
changing due to the activity of surfacing failure modes, analyzing the modes, and implementing
fixes to the surfaced modes. It is often reasonable to portray this reliability growth in an
‘idealized manner, i.e., by a smooth rising curve that captures the overall pattern of growth. The
curve relates a measure of system reliability, e.g., mean-time-between-failures (MTBF), to test
duration (e.g., hours). The functional form used to express this relationship in MIL-HDBK-189
[2] is given by

18



M(t) = (M, /(1-a)) (¢t,)° (1)

In this equation, M(t) typically denotes the MTBF achieved after t test hours. The exponent « is
termed the growth rate and represents the slope of the assumed linear relationship between
In{M(t)} and In(t), where In denotes the base ¢ logarithm function. The parameters ¢,, M, may
be thought of as defining the initial conditions. In particular, M, may be interpreted as the
MTBEF associated with the initial configuration entering the reliability growth test. In this
interpretation, ¢, would be the planned cumulative test time until one or more fixes are

incorporated. An alternate and more general interpretation of M, and ¢, would be to regard
M, as the anticipated average MTBF over an initial test period ¢, .

In the above discussion, we have referred to M(t) as the MTBF and have measured test
duration by time units, e.g., t hours. We will continue to refer to M(t) and test duration t in this
fashion; however, more generally, M(t) may denote mean-miles-to-failure or mean-rounds-to-
failure (for a large number of rounds). The corresponding measures of test duration would be
test mileage or rounds expended, respectively.

As indicated in Section 2.1.1, we shall consider using the data generated during the
reliability growth test phase to demonstrate the system reliability technical requirement (TR) at a
specified confidence level y. This section addresses the case where the data consists of
individual failure times 0<t,<t,<...<t, <T for n observed mission reliability failures during

test time T, where Equation (1) is assumed to hold for 0<t<T. Since the MIL-HDBK-189
growth model governed by Equation (1) is being assumed in this section, we shall also require
that the observed number of failures by test duration t, denoted by N(t), be a non-homogeneous

Poisson process with intensity function po{t)={M(t)}™".

The growth curve planning parameters a,¢,, M, , and the test time T should be chosen to

reasonably limit the consumer (Government) and producer (contractor) statistical risks referred
to in Section 2.1.1. Prior to presenting the relationship between these risks and the parameters
mentioned above, it is instructive to review the determination of these risks for a reliability
demonstration test based on a constant configuration.

The parameters defining the reliability demonstration test consist of the test duration 7,,,, ,

and the allowable number of failures c. Define the random vanable F,. to be the number of

obs

failures that occur during the test time 7}, . Denote the observed value of F,, by f,, . Then
the "acceptance"” or "passing" criterion is simply f, <c.

Let M denote the MTBF associated with the constant configuration under test. Then F,,,
has the Poisson probability distribution given by

it (Tan /M)

Prob(F, = i) '
1!

obs

@
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Thus the probability of acceptance, denoted by Prob(A; M, ¢, T, ), as a function of M, ¢, and
Tpem 18 given by

Prob(A;M,c,T,,,,) = Prob(F

obs obs

<c) = Zc:Prob(F =i)

e e-TD,,,/M (T_ /M)

i=0 1!

()

To ensure "passing the demonstration test" is equivalent to demonstrating the TR at confidence
level y (e.g., y = 0.80 or y = 0.90), we must choose ¢ such that

f;zbssc < TRS[}'(f;bs) (4)

where TR>0 and ¢ ,(fobs) denotes the value of the 100 y percent lower confidence bound when
f.», failures occur in the demonstration test of length T, . Note that ¢ r(fobs) is a lower

confidence bound on the true (but unknown) MTBF of the configuration under test. It is well
known (see Proposition 1 in Appendix C) that the following choice of ¢ satisfies (4):

Choose c to be the largest non-negative integer k that satisfies the inequality

k i
Z,e-TDm/TR (TM/TR) < 1_}/ (5)
i 1!
Note c is well-defined provided

exp (-Tpe /TR) < 1-y (6)
Throughout this section we shall assume (6) holds and that c is defined as above.

Recall that the operating characteristic (OC) curve associated with a reliability
demonstration test is the graph of the probability of acceptance, i.e., Prob (A;M,c, T, ) given in

Equation (3), as a function of the true but unknown constant MTBF M as depicted on Figure 1.
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Figure 1. Example OC Curve for Reliability Demonstration Test.

The Government (or consumer risk) associated with this curve, called the Type II risk, is defined
by

Typell A Prob(A;TR,c, T, ) N
Thus, by the choice of c,
Typell < 1-p (8)

For the contractor (producer) to have a reasonable chance of demonstrating the TR with
confidence v, the system configuration entering the reliability demonstration test must often have
a MTBF value, say M (the contractor's goal MTBF) that is considerably higher than the TR.

The probability that the producer fails the demonstration test given the system under test has a
true MTBF value of M, is termed the producer (contractor) or Type I risk. Thus

Typel = 1 - Prob(A;M,,c, T, ) )]

If the Type I risk is higher than desired, then either a higher value of M should be attained
prior to entering the reliability demonstration test or 7,.,, should be increased. If T}, is

increased then ¢ may have to be readjusted for the new value of 7,,,, to remain the largest non-
negative integer that satisfies inequality (5).
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The above numbered equations and inequalities express the relationships between the
reliability demonstration test parameters ¢, T, , the requirement parameters TR, v, and the
associated risk parameters (the consumer and producer risks). These relationships are
fundamental in conducting tradeoff analyses involving these parameters for planning reliability
demonstration tests. In the next section we shall present relationships between the defining
parameters for a reliability growth curve (M, , ¢,, a, and T), the requirement parameters (TR
and y), and the associated statistical risk parameters (the consumer and producer risks). Once
these relationships are in hand, tradeoffs between these parameters may be utilized to consider
demonstrating the TR at confidence level y by utilizing reliability growth test data.

2.1.3 Reliability Growth Operating Characteristic (OC) Analysis. In the previous
section, it was noted that for a reliability demonstration test, passing the test could be stated in
terms of the allowable number of failures, c. It was noted that if ¢ is properly chosen, then
passing the test is equivalent to demonstrating the TR at confidence level vy, i.e.,

f,<c & TR<Ly(f,)

In the presence of reliability growth, observing c or fewer failures is not equivalent to
demonstrating the TR at a given confidence level. The cumulative times to failure as well as the
number of failures must be considered when using reliability growth test data to demonstrate the
TR at a specified confidence level y. Thus, the "acceptance" or "passing” criterion must be stated
directly in terms of the y lower confidence bound on M(T) calculated from the reliability growth
data. These data will be denoted by (n, s) where n is the number of failures occurring in the
growth test of duration T and s =(¢,, ¢,,...,¢,) is the vector of cumulative failure times. In

particular, ¢, denotes the cumulative test time to the i” failure and 0<¢, <t,.....<t, < T for

n>1. We shall also refer to the random vector (N, S) which takes on values (n, s) for n>1.
Unless otherwise stated, throughout the remainder of Section 2 (N, S) will be conditioned on
N2=1. ' ‘

Using the lower confidence bound methodology developed for reliability growth data by
Crow in [3], we shall define our acceptance criterion by the inequality

TR < {y (n, s) (10)

where £, (n,s) is the y statistical lower confidence bound on M(T), calculated as in [3] for n > 1.
Thus, the probability of acceptance is given by

Prob (TR < Ly (N,S)) (11)

where the random variable L, (N, S) takes on the value ¢ , (n,s5) when (N, S) takes on the value

(n, s).

In accordance with [3], for n 21, we define
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2nA
z, ()

¢, (ns) A ( jMnm (12)

where z, (n) is the unique positive value of z such that

2 2j-1 .
(1/1,(z ))Z(f(/J )1), = 1-y (13)

In the above, the function I, denotes the modified Bessel function of order one defined as
follows:

L(z) A Z——(Jf‘(/ jz_)l;‘! (14)

In Equation (12), M . (T ) denotes the maximum likelihood estimate (mle) for M(T) given
in MIL-HDBK-189 when n failures are observed. As discussed in MIL-HDBK-189,

m(r) = 17/(nB,) | (15)
where
B = n/[iln(T/ti)] (16)

The distribution of (N, S) and hence that of L, (N, S) is completely determined by the test
duration T together with any set of parameters that define a unique reliability growth curve of the
form given by Equation (1) in Section 2.1.2. Thus, the value of a probability expression such as
given in (11) also depends on T and the assumed underlying growth curve parameters. One such
set of parameters, as seen directly from Equation (1), 1s ¢,, M, , o together with T. In this

growth curve representation, ¢, may be arbitrarily chosen subject to 0<¢,<T. Alternately, scale

parameter A>0 and growth rate o, together with T, can be used to define the growth curve by the
equation

M(t) = 1/(A4t%"), 0<t<T (17)
where f=1-a.

Note by Equation (17),
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/4 = (M(T))AT# (18)
Thus, the growth curve can also be expressed as
M(t) = (M(T))(t/T)*, 0<t<T - (19)

By Equation (19) we see that the distribution of (N, S) and hence that of L, (N, S) is determined
by (o, T, M(T)).

Unless otherwise stated, throughout the remainder of this section, the distributions for (N,
S) and for random variables defined in terms of (N, S) will be with respect to a fixed but
unspecified set of values for a, T, M(T) subject only to a<1, T>0, and M(T)>0. The same
considerations apply to any associated probability expressions. In particular, the probability of
. acceptance, i.e., Prob (TR<L,(N, S)), is a function of (o, T, M(T)).

To further consider the probability of acceptance, we must first consider several properties
of the system of lower confidence bounds generated by Ly (N, S) as specified via Equations (12)
through (16). The statistical properties of this system of bounds directly follow from the
properties of a set of conditional bounds derived by Crow in [3]. These latter bounds are
conditioned on a sufficient statistic W that takes on the value

w = iln(T/ti) (20)

i=t

when (N, S) takes on the value (n, s).

Let Ly (N, S; w) denote the random variable L, (N, S) conditioned on W = w>0. In 3]
Crow shows that L, (N, S; w) generates a system of y lower confidence bounds on M(T), i.¢e.,

Prob (L,(N,S;w)<M(T)) = » Q1)

for each set of values (a, T, M(T)) subject to a<1, T>0, and M(T)>0. Note that the value of w is
not known prior to conducting the reliability growth test. Thus, to calculate an OC curve for test
planning, i.e., a priori, we wish to base our acceptance criterion on L, (N, S) as in (11) and not on
the conditional random variable L, (N, S; w). We can utilize Equation (21) to show (see
Propositions 2, 3, and 4 in Appendix C) that the Type II or consumer risk for M(T)=TR is at
most 1-y (for any a<1 and T>0), analogous to the case in Section 2.1.2, i.e.,

Typell = Prob(TR<L,(N,S)) < 1-p (22)

for any a<1 and T>0, provided M(T) = TR.
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To emphasize the functional dependence of the probability of acceptance on the underlying
true growth curve parameters (a, T, M(T)), we shall denote this probability by Prob (A; o, T,
M(T)). Thus,

Prob(A;2, T,M(T)) A Prob(TR <L,(N,S)) (23)

where the distribution of (N, S) and hence that of L, (N, S) is determined by (a,T, M(T)). Itcan
be shown that Prob (A; o, T, M(T)) only depends on the values of M(T)/TR (or equivalently
M(T) for known TR) and E(N). The ratio M(T)/TR is analogous to the discrimination ratio for a
constant configuration reliability demonstration test of the type considered in Section 2.1.2.

Note E(N) denotes the expected number of failures associated with the growth curve determined
by (o, T, M(T)). More explicitly, the following equations can be derived (see Propositions 5 and
6 in Appendix C):

E(N) = T/{(1-a)M(T)} (24)

and

Prob (A;o, T, M(T)) =

© 2 n
(1-e™*)*? Z Prob Lan = e™ (“ j (25)
oy z; (n)  2pd n!

where u A E(N) and d A M(T)/TR.

Note (25) shows that the probability of acceptance only depends on p and d. Thus, we shall
subsequently denote the probability of acceptance by Prob (A;u,d).

By (22),

Typell = Prob(A;x1) < 1-y- (26)

Thus, the actual value of the Government or consumer risk solely depends on p and is at most
1-y. To consider the producer or contractor risk, Type I, let &, denote the contractor's target or

goal growth rate. This growth rate should be a value the contractor feels he can achieve for the
growth test. Let M, denote the contractor's MTBF goal. This 1s the MTBF value the contractor

plans to achieve at the conclusion of the growth test of duration T. Thus, if the true growth curve
has the parameters «,; and M, then the corresponding contractor risk of not demonstrating the

TR at confidence level v (utilizing the generated reliability growth test data) is given by
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Typel = 1-Prob(A;x;,dg) (27)
where
d,=M,/TR  and  u,=T/{(1-2,)M,} (28)

If the Type I risk is higher than desired, there are several ways to consider reducing this risk
while maintaining the Type II risk at or below 1-y. Since Prob (A; 4, d;) is an increasing

function of x; and d,;, the Type I risk can be reduced by increasing one or both of these
quantities, €.g., by increasing T.

To further consider how the Type I statistical risk can be influenced, we shall express d,;
and 4, interms of TR, T, ¢, and the initial conditions (M, ¢,). Using Equations (1) and (19)
with a = @, and M(T) = M, by (28) we can show

M
M,/TR = d, = ’ T (29)
(1-a,)t% TR |
and
E(N) = 4 = (tf°/M,)T" (30)

Note for a given requirement TR, initial conditions (M, ¢,), and an assumed positive growth
rate a,, the contractor risk is a decreasing function of T via Equations (27), (29), and (30).

These equations can be used to solve for a test time T such that the contractor risk is a specified
value. The corresponding Government risk will be at most 1- » and is given by Equation (26).

Section 2.1.4 contains two examples of an OC analysis for planning a reliability growth
program. The first example illustrates the construction of an OC curve for given initial

conditions (M, , ¢,) and requirement TR. The second example illustrates the iterative solution
for the amount of test time T necessary to achieve a specified contractor (producer) risk, given
. initial conditions (M, , ¢) and requirement TR. These examples use Equations (29) and (30)
rewritten as in Equations (1) and (24), respectively, i.e.,

M, \(T) _ T
M(T)-(l—_;j(t] and E(N)——————(l_a)M(T) (31)

1

The quantities d= M(T)/TR and p = E(N) are then used to obtain an approximation to Prob
(A;u,d). Approximate values are provided in Appendix B for a range of values for p and d. The
nature of this approximation is also discussed in Appendix B.
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2.1.4 Application.

2.1.4.1 Example 1. Suppose we have a system under development that has a technical
requirement (TR) MTBF of 100 hours to be demonstrated with 80 percent confidence. For the
developmental program, a total of 2800 hours test time (T) at the system level has been
predetermined for reliability growth purposes. Based on historical data for similar type systems
and on lower level testing for the system under development, the initial MTBF (M, ) averaged

over the first 500 hours (¢, ) of system-level testing was expected to be 68 hours. Using these

data, an idealized reliability growth curve was constructed such that if the tracking curve
followed along the idealized growth curve, the TR MTBF of 100 hours would be demonstrated
with 80 percent confidence. The growth rate (o) and the final MTBF (M(T)) for the idealized
growth curve were 0.23 and 130 hours, respectively. The idealized growth curve for this
program is depicted on Figure 2.
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8 160
I a - .23 -~ M(T) = 130
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Figure 2. Idealized Reliability Growth Curve.

For this example, suppose we want to determine the operating characteristic (OC) curve
for the program. For this, we need to consider alternate idealized growth curves where the M(T)

vary but the M, and ¢, remain the same values as those for the program idealized growth curve;
1.e., M, =68 hours and ¢, = 500 hours. In varying the M(T), this is analogous to considering

alternate values of the true MTBEF for a reliability demonstration test of a fixed configuration
system. For this program, one alternate idealized growth curve was determined where M(T)

27



equals the TR whereas the remaining alternate idealized growth curves were determined for
different values of the growth rate. These alternate idealized growth curves along with the
program idealized growth curve are depicted on Figure 3.

250
' M(T) o
= Program Curve .- 228 ] .40
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Figure 3. Program and Alternate Idealized Growth Curves.

Now, for each idealized growth curve we find M(T) and the expected number of failures
E(N) from equation (31). Using the ratio M(T)/TR and E(N) as entries in the tables contained in
Appendix B, we determine, by double linear interpolation, the probability of demonstrating the
TR with 80 percent confidence. This probability is actually the probability that the 80 percent
lower confidence bound (80 percent LCB) for M(T) will be greater than or equal to the TR.
These probabilities represent the probability of acceptance (P(A)) points on the OC curve for this
program which is depicted on Figure 4. The M(T), o, E(N), and P(A) for these idealized growth

curves are summarized in the following table:

M(T) o EMN) P(A)
100 0.14 32.6 0.15
120 0.20 29.2 0.37
130 0.23 28.0 0.48
139 0.25 26.9 0.58
163 0.30 24.5 0.77
191 0.35 22.6 0.90
226 0.40 20.6 0.96
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Figure 4. Operating Characteristic (OC) Curve.

From the OC curve, the Type I or producer risk is 0.52 (1-0.48) which is based on the
program idealized growth curve where M(T) = 130. Note that if the true growth curve were the
program idealized growth curve, there is still a 0.52 probability of not demonstrating the TR with
80 percent confidence. This occurs even though the true reliability would grow to M(T) = 130
which is considerably higher than the TR value of 100. The Type II or consumer risk, which is
based on the alternate idealized growth curve where M(T) = TR = 100, is 0.15. As indicated on
the OC curve, it should be noted that for this developmental program to have a producer risk of
0.20, the contractor would have to plan on an idealized growth curve with M(T) = 167.

2.1.4.2 Example 2. Consider a system under development that has a technical
requirement (TR) MTBF of 100 hours to be demonstrated with 80 percent confidence, as in
Example 1. The initial MTBF (M, ) over the first 500 hours (¢, ) of system level testing for this

system was estimated to be 48 hours which, again as in Example 1, was based on historical data
for similar type systems and on lower level testing for the system under development. For this
developmental program, it was assumed that a growth rate (o) of 0.30 would be appropriate for
reliability growth purposes. Now, for this example, suppose we want to determine the total
amount of system level test time (T) such that the Type I or producer nisk for the program
idealized reliability growth curve is 0.20; i.e., the probability of not demonstrating the TR of 100
hours with 80 percent confidence is 0.20 for the final MTBF value (M(T)) obtained from the
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program idealized growth curve. This probability corresponds to the probability of acceptance
(P(A)) point of 0.80 (1-0.20) on the operating characteristic (OC) curve for this program.

Now, to determine the test time T which will satisfy the Type I or producer risk of 0.20,
we first select an initial value of T and, as in Example 1, find M(T) and the expected number of ;
failures (E(N)) from equation (31). Then, again, using the ratio M(T)/TR and E(N) as entries in '
the tables contained in Appendix B, we determine, by double linear interpolation, the probability
of demonstrating the TR with 80 percent confidence. An iterative procedure is then applied until
the P(A) obtained from the table equals the desired 0.80 within some reasonable accuracy. For
this example, suppose we selected 3000 hours as our initial estimate of T and obtained the
following iterative results:

T M(T) E(N) P(A)
3000 117.4 36.5 <0.412
4000 128.0 44.6 <0.610
5000 136.8 52.2 <0.793
5500 140.8 55.8 0.815
5400 140.0 55.1 0.804
5300 139.2 54.4 0.790
5350 139.6 54.7 0.796
5375 139.8 54.9 0.800

Based on these results, we determine T = 5375 hours to be the required amount of system
level test time such that the Type I or producer risk for the program idealized growth curve is
.0.20.

2.1.5 Summary. The concepts of an operating characteristic (OC) analysis have been
extended to the reliability growth setting. Government (consumer) and contractor (producer)
statistical risks have been expressed in terms of the underlying growth curve parameters, test
duration, and reliability requirement. In particular, for a given confidence level, these risks have
been shown to depend solely on the expected number of failures during the growth test and the
ratio of the MTBF to be achieved at the end of the growth program to the MTBF technical
requirement to be demonstrated with confidence. Formulas have been developed for computing
these risks as a function of the test duration and growth curve planning parameters.

The methodology developed and illustrated in this section should be of interest to RAM
analysts responsible for structuring realistic reliability growth programs to achieve and
demonstrate program objectives with reasonable statistical risks. In particular, this methodology -
allows the RAM analysts to construct a reliability growth curve that considers both the
Government and contractor risks prior to agreeing to a reliability growth program.
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2.2 Subsystem-Level Planning.
2.2.1 Subsystem Reliability Growth. This material is based on Reference [4].

2.2.1.1 Benefits and Special Considerations. Conducting a subsystem reliability
growth program prior to the start of system level testing can -

¢ reduce the amount of system level testing,

¢ reduce or eliminate many failure mechanisms (problem failure modes) early in the
development cycle where they may be easier to locate and correct,

o allow for the use of subsystem test data to monitor reliability improvement,
e increase product quality by placing more emphasis on lower level testing and

e provide management with a strategy for conducting an overall reliability growth
program.

Thus, subsystem reliability growth offers the potential for significant savings in testing cost.

To be an effective management tool for planning and assessing system reliability in the
presence of reliability growth, it is important for the subsystem reliability growth process to
adhere as closely as possible to the following considerations:

e Potential high-risk interfaces need to be identified and addressed through joint
subsystem testing,

e Subsystem usage/test conditions need to be in conformance with the proposed system
level operational environment as envisioned in the Operational Mode
Summary/Mission Profile (OMS/MP),

e Failure Definitions/ Scoring Criteria (FD/SC) formulated for each subsystem need to
be consistent with the FD/SC used for system level test evaluation.

2.2.1.2 Overview of Subsystem Reliability Growth Planning Model - SSPLAN. The
subsystem reliability growth planning model, SSPLAN, provides the user with a meansto
develop subsystem testing plans for demonstrating a system mean time between failure (MTBF)
goal prior to system level testing. (The MTBF goal is also referred to as the MTBF objective
(MTBFg,).) In particular, the model is used to develop subsystem reliability growth planning
curves that, with a specified probability, achieve a system MTBF objective with a specified
confidence level. More precisely, associated with the subsystem MTBFs growing along a set of
planned growth curves for given subsystem test durations is a probability; this is termed the
probability of acceptance (P,), the probability that the system MTBF objective will be
demonstrated at the specified confidence level. The complement of P4, 1-Py,, is termed the
producer’s (or contractor’s) risk: the risk of not demonstrating the system MTBF objective at the
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specified confidence level when the subsystems are growing along their target growth curves for
the prescribed test durations. Note that P4 also depends on the fixed MTBF of any non-growth
subsystem and on the lengths of the demonstration tests on which the non-growth subsystem
MTBF estimates are based.

SSPLAN estimates P4 for a given value of the final combined growth subsystem MTBF
(MTBFg ;) by simulating the reliability growth of each subsystem and calculating a statistical
lower confidence bound (LCB) for the final system MTBF based on the growth and non-growth
subsystem simulated failure data. If the system LCB, at the specified confidence level, meets or
exceeds the specified MTBF goal, then the trial is labeled a success. SSPLAN runs as many as
5000 trials, and estimates P4 as the number of successes divided by the number of trials.

One of the model’s primary outputs is the growth subsystem test times. If the growth
subsystems were to grow along the planning curves for these test times then the probability
would be P, that the subsystem test data demonstrate the system MTBF objective, MTBF,y;, at
the specified confidence level. The model determines the subsystem test times by using a
specified fixed allocation of the combined final failure intensity to each of the individual growth
subsystems.

As a reliability management tool, the model can serve as a means for prime contractors to
coordinate/integrate the reliability growth activities of their subcontractors as part of their overall
strategy in implementing a subsystem reliability test program for their developmental systems.

2.2.1.3 List of Notation. There are some variant terms in the following parameter list to
show that the form of some parameters depends on the context in which they are used. For
example, T, T,; and T, indicate, respectively, that time may be used generically, specifically

for non-growth subsystem i and specifically for growth subsystem i. Also, for notational
convenience, several parameters that can vary by subsystem are sometimes written without a
subsystem subscript. -However, subscripts are used where required for clarity.

t subsystem test time

T total subsystem test time (0 <¢<7T)

F (1) total number of subsystem failures by time t

E [F (1)] expected number of subsystem failures by time t

A AMSAA model scale parameter (1> 0) for growth subsystem

/) AMSAA model shape (or growth) parameter (4> 0) for growth
~ subsystem A .

a growth rate (@ =1-4), (0<a<l)

t, initial time period for subsystem growth test, ( #, >0)

MTBF Mean Time Between Failure

M, initial average MTBF over interval (O,t / ]

A, initial average failure intensity over interval (O,t, ]

ms management strategy, (0 <ms <1)

At) instantaneous failure intensity at time t, [o(¢ }>0]

3
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* non-growth subsystem i. Also, number of “equivalent demonstration’

instantaneous MTBF at time t
system MTBF objective to be demonstrated with confidence y
probability of acceptance associated with demonstrating MTBF q;

lower confidence bound

demonstration (non-growth) test data or estimator subscript
growth test data or estimator subscript

subsystem index number

total amount of demonstration or “equivalent demonstration”

(non-growth) test time for subsystem i
total amount of growth test time for subsystem i

specified maximum allowable growth test time for subsystem i.
Thus To.i< Tmax.i
number of failures during a demonstration test of length Tp; for a

’

failures for growth subsystem i during growth test
number of failures during a test time Tg; for a growth

subsystem 1
demonstration (constant) MTBF for non-growth subsystem i

equals M},

Final MTBF for growth subsystem 1

equals Mg,

denotes an estimate when placed over a parameter

estimate of o ;

estimate of po.: (Ta.i)

chi-squared random variable with “df” degrees of freedom
final system failure intensity

total failure intensity contribution of growth subsystems to o,

fraction of p; 4 allocated to growth subsystem i

final system MTBF

final MTBF of combined growth subsystems, i.e., Ma.sys = 03,
system demonstration “equivalent” number of failures

system demonstration “equivalent” test time

maximum likelihood estimate
symbol for “distributed as” a specified random variable

subsystem i MTBF estimate of demonstration or

. “equivalent demonstration” MTBF

subsystem i mle for final MTBF of growth subsystem
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M gy estimate of final system MTBF

7 specified confidence level for demonstrating MTBF

,(jf,, chi-squared 100y percentile point for df degrees of freedom

Y estimate of final subsystem i failure intensity

Psrs estimate of final system failure intensity

K number of subsystems

LCB,,, subsystem 1 LCB at » confidence level from demonstration data
LCB;,, subsystem 1 LCB at y confidence level from growth data

( CF )i
(C)

cost per failure for subsystem i

cost per hour for subsystem 1

Crot total testing cost

Ci[Tp,] cost contribution of non-growth subsystem 1 to Cr,, as a function of Tp;
Ci[eci(Tg,)] cost contribution of growth subsystem i to Cr,y as a function of pg i(Tc,)
(M Guoys )NEW new value of Mc. o to use in search routine

'(M Gusys )w lower bound for M. s

(M Gusys )UB upper bound for Mo, s

( P, ) " estimated P, associated with (Mc. ),

(Py) s estimated P, associated with (M, )UB

(Py) o desired P,

2.2.2 SSPLAN Methodology.

2.2.2.1 Model Assumptions.

The SSPLAN methodology assumes that a system

may be represented as a series of K >1 independent subsystems. (The theory allows for K =1
but the current computer implementation requires K >2.)

System | = | Subsystem 1 | + ... + | Subsystem K

This means that a failure of any single subsystem results in a system level failure and that a
failure of a subsystem does not influence (either induce or prevent) the failure of any other
subsystem. SSPLAN allows for a mixture of test data from growth and non-growth subsystems,
but in its current implementation, at least one growth subsystem is required to run the model.
The model utilizes the following assumption for the growth subsystems:

e The number of failures occurring over a period of test time follows a
nonhomogeneous Poisson process (NHPP) with mean value function

E[F(+)] = 4/ (4,4:>0)° (1)
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where E[F(t)] is the expected number of failures by time t, A is the scale parameter and /£ is the
growth (or shape) parameter. The parameters A and B may vary from subsystem to subsystem
and will be subscripted by a subsystem index number when required for clarity. Non-growth
subsystems are assumed to have constant failure rates.

2.2.2.2 Mathematical Basis for Growth Subsystems.

2.2.2.2.1 Initial Conditions. The power function shown in (1) together with the initial
conditions described in this section provide a framework for a discussion of the way SSPLAN

develops reliability growth curves. Together they provide a starting point for describing each
growth subsystem’s MTBF as a function of the parameters 4, £ and t. Since A is not

convenient to directly work with for planning purposes, we shall relate A to an initial or average
subsystem MTBF over an initial period of test time. First, we note that the growth parameter,
/B, is related to the growth rate, «, by the following:

p=ima (g20) ®

For planned growth situations, @ must be in the interval (0,1). Additional guidance on choosing
a may be gained from Ellner & Trapnell [5].

The initial conditions for the model consist of:

e an initial time period, ¢, (for example, the amount of planned test time prior to the
implementation of any corrective actions), and

e the initial MTBF, M, representing the average MTBF over the interval ( 0,¢, ]

From this, note that

4= (M,>0) 3)

is the average failure intensity over the interval (O,t / ] The fact that (1) must be consistent with

the initial conditions allows the scale parameter, A, to be expressed in terms of planning
parameters t;, M, and o. To do so, note the expected number of failures by time ¢, is:

E[F(:,)] = 41 (,>0) )

Using (1), we see that the expected number of failures by time ¢, is also given by

E[F(t,)] = 4/ (5)
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By equating (4) an_d (5) and by using the relationship @ =1- £ from (2), an expression for A
may be developed:

(6)

In addition to using both M, and ¢, as initial growth subsystem input parameters, the

model allows a third possible input parameter, termed the planned management strategy, ms,
which represents the fraction of the initial subsystem failure intensity that is expected to be
addressed through corrective actions. The relationship among these three parameters is
addressed in the following discussion.

Since reliability growth occurs when correctable failure modes are surfaced and
(successful) fixes are incorporated, it is desired to have a high probability of observing at least
one correctable failure by time ¢,. In what follows we shall utilize a probability of 0.95. From

our assumptions, the number of failures that occur over the initial time period ¢, is Poisson
distributed with expected value A,t;. Thus

095 = l-g(maa) l—e{—ﬁ’_) ©O<ms<l) (7)

From (7), it is evident that specifying any two of the parameters is sufficient to determine the
third parameter. Thus, there are three options for the user when entering the initial conditions for
growth subsystems.

2.2.2.2.2 Failure Intensity and Mean Time Between Failures - MTBF. The
derivative with respect to time of the expected number of failures function (1) is:

o(t) = Ap” ®)

The function p(t) represents the instantaneous failure intensity at time t. The reciprocal of p(r)
is the instantaneous MTBF at time t:

1

A1)

Equations (8) and (9) provide much of the foundation for a discussion of how SSPLAN develops
reliability growth curves for growth subsystems. Figure 5 shows a graphical representation of
subsystem reliability growth.

M(t) = )
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Figure 5. Reliability Growth Based On
AMSAA Continuous Tracking Model.

2.2.2.3 Mathematical Basis for Non-growth Subsystems. Based on the constant
failure rate assumption, the input parameters that characterize a non-growth subsystem are its
fixed reliability estimate, M, and the length of the demonstration test, T, upon which the constant
MTBEF estimate is based.

2.2.2.4 Algorithm for Estimating Probability of Acceptance P5. Rather than use
purely analytical methods, SSPLAN uses simulation techniques to estimate the probability of
achieving a system MTBF objective with a specified confidence level. This estimate of Py is
calculated by running the simulation a large number of trials.

Using the parameters that have been inputted and calculated at the subsystem level, the
model generates “test data” for each subsystem for each simulation trial, thereby developing the
data required to produce an estimate for the failure intensity for each subsystem. The test
intervals and estimated failure intensities corresponding to the set of subsystems that comprise
the system provide the necessary data for each trial of the simulation.

The model then uses a method developed for discrete data (the Lindstrém-Madden
Method) to “roll up” the subsystem test data to arrive at an estimate for the final system
reliability at a specified confidence level, namely, a statistical lower confidence bound (LCB) for
the final system MTBF. In order for the Lindstrom-Madden method to be able to handle a mix
of test data from both growth and non-growth subsystems, the model first converts all growth
(G) subsystem test data to an “equivalent” amount of demonstration (D) test time and
“equivalent” number of demonstration failures. This conversion process is done so that all
subsystem results are expressed in a common format, namely, in terms of fixed configuration
(non-growth) test data. (The equivalent demonstration test time and the equivalent
demonstration number of failures are, respectively, the length of time and the number of failures
a non-growth test would have to achieve to produce an {MTBF point estimate, MTBF LCB} pair
that is equivalent to the respective estimates from a growth test.) By treating growth subsystem
test data in this way, a standard lower confidence bound formula for time-truncated
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demonstration testing may be used to compute the system reliability LCB for the combination of
~ “converted” growth and non-growth test data.

SSPLAN can run as many as 5000 trials. For each simulation trial, if the LCB for the
final system MTBF meets or exceeds the specified system MTBF objective, then the trial is
termed a success. An estimate for the probability of acceptance is the ratio of the number of
successes to the number of trials.

The algorithm for estimating the probability of acceptance is described in greater detail
by expanding upon the following four topics:

e generating “test data” estimates for growth subsystems

e generating “test data” estimates for non-growth subsystems

e converting growth subsystem data to “equivalent” demonstration data

¢ using the Lindstrém-Madden method for computing system level statistics

2.2.2.4.1 Generating Estimates for Growth Subsystems. There are two quantities of
interest for each growth subsystem for each trial of the simulation -

e the total amount of test time, T, and

e the estimated failure intensity at that time, ,bG‘i(T o)

To calculate T, note that from the initial input conditions we have values for the

growth parameter, £ (using (2)), and the scale parameter, 4 (using (3) and (6)). Also, note that
the final growth subsystem MTBF, M, ;, can be calculated by dividing the final MTBF of the

combined growth subsystems, M ¢, by the subsystem failure intensity allocation a;.,
Equations (8) and (9) can then be combined and rearranged to solve for T, :

I, = 1 (#1) (10)

e, |

To generate the estimated failure intensity, o G‘,.(TG_,. ), the model uses 4, £, T, and (1)
with t = T to calculate a Poisson distributed random number, n;, which serves as an outcome
for the number of growth failures during a simulation trial. The model then generates a chi-
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'squared random number with 2n,; degrees of freedom and uses relation (11) below referenced

in Crow [6] for obtaining a random value from the distribution for the estimated growth
parameter, conditioned on the number of growth failures, n,.:, during the trial:

%) . (11)

Note /£ is obtained from the initial input and (2). One can show 7 and the maximum
likelihood estimates (mle’s) for A and P satisfy the following:

ne. = ATS (i,ﬁ,TG,,. >o) (12)
In light of equation (1), this result is not surprising.

Using mle’s for the parameters in (8) yields:
/bG.i(TG,i ) = ﬁﬁTG’/’,'I (13)

Rearranging terms in (13) we obtain:

/bG,i(TG,i ) = T’ (14)
G.i
Substituting (12) into (14) we conclude:
P ne.i g
Pa.i (TG.i ) = = (15)
TG,i

Thus using ng; and the corresponding conditional estimate for /4 generated from (11), an
estimate for the failure intensity, ,bG',.(TG',. ), can be obtained for each growth subsystem for each
trial of the simulation. Note the same value for Tg; is used on all the simulation trials.

2.2.2.4.2 Generating Estimates for Non-growth Subsystems. There are two quantities
of interest for each non-growth subsystem for each trial of the simulation -

e the total amount of test time, 7}, and

e the estimated failure intensity, o, (T i )

The total amount of test time, T}, is an input planning parameter that represents the
length of the demonstration test on which the non-growth subsystem MTBF estimate is based.

ks
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To generate the estimated failure intensity, o, (T D’,.), the model first calculates (this is done
only once for each non-growth subsystem in SSPLAN) the expected number of failures:

D,i _ (16)

where M, is an input planning parameter representing the constant MTBF for the non-growth

subsystem. The expected number of failures from (16) is then used as an input parameter
(representing the mean of a Poisson distribution) to a routine that calculates a Poisson distributed

random number, #,;, which is an outcome for the number of failures during a simulation trial.
An estimate for the failure intensity follows:

poi(Tp,) = 222 (17)

' 2.2.2.4.3 Calculating Lower Confidence Bound for System MTBF. After all
subsystem estimates have been calculated for a particular trial, SSPLAN uses a two-step
approach to calculate the system reliability lower confidence bound by:

1. converting all growth subsystem data to “equivalent” demonstration data, that is, data
from a fixed configuration. These data consist of:
e T, - subsystem i equivalent demonstration test time and

® n,, - subsystem i equivalent demonstration number of failures

2. using the Lindstrém-Madden method to obtain system level statistics for calculating
the LCB for the system MTBF.

2.2.2.4.3.1 Converting Growth Subsystem Data to “Equivalent” Demonstration
Data. There are two equivalency relationships that must be maintained for the approach to be

valid, namely, the demonstration data and the growth data must yield:

1. the same subsystem MTBF point estimate:
M, = Mg, (18)
2. and the same subsystem MTBF lower bound at a specified confidence lével v
LCB,,, = LCB;,, (19)

Starting with the left side of the second equivalency relationship, (19), note that the lower
confidence bound formula for time-truncated demonstration testing is:
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' 2 TD i
LCB,, = ' (20)

2
ZZnD_i+2,r

where T),, is the demonstration test time, n,; is the demonstration number of failures, y is the
specified confidence level and Zzzn[,,.+z,, is a chi-squared 100 y percentile point with 2n,, + 2

degrees of freedom. Using an approximation equation developed by Crow, the lower confidence
bound formula for growth testing (the right side of (19)) is:

-

n.. M.
LCB,., =~ -9 (1)

Gy 2
ZnG_,-+2,y

where n; is the number of growth failures during the growth test, M c.: 18 the mle for the

MTBF and ,sz +2,, 1s a chi-squared 100y percentile point with ng; + 2 degrees of freedom.

Since we want (20) and (21) to yield the same estimate, we begin by equating their
denominators:

Re

2np; +2=ng, +2 = ny, =—24‘- (22)
Equating numerators from (22) and (23) yields:
- Rg, MG i
2Ty, =ng; Mgy, = T, = —2— (23)

Thus (19) holds for np; and Tp; given by (22) and (23) respectively in terms of the simulated
growth test data.

Dividing (23) by (22):
A~ T : ~
My, = == Mg, (24)
Rp,
Thus (18) is also satisfied.
By (23) we obtain:
n-.
T,, = —t— (25)
2 pe(Ter)
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From (13) we have:

Rg.i

oy = 55 (26)
24015,

Multiplying both numerator and denominator of (26) by T, replacing the estimate of the

expected number of failures (in the denominator) by the observed number of growth failures and
canceling the term 7, in the numerator and denominator yields:

T, Toy (27)
D, 2 '&

SSPLAN uses (22) and (27) in converting growth subsystem data to equivalent demonstration
data.

2.2.2.4.3.2 Using the Lindstrom-Madden Method for Computing System Level
Statistics. A continuous version of the Lindstrém-Madden method: for discrete subsystems is
used to compute an approximate lower confidence bound (LCB) for the final system MTBF from
subsystem demonstration (non-growth) and “equivalent” demonstration (converted growth) data.
The Lindstrém-Madden method typically generates a conservative LCB, which is to say the
actual confidence level of the LCB is at least the specified level. It computes the following four
estimates in order:

1. the equivalent amount of system level demonstration test time. (Since this estimate is
the minimum demonstration test time of all the subsystems, it is constrained by the

least tested subsystem.)

2. the estimate of the final system failure intensity, which is the sum of the estimated
final growth subsystem failure intensities and non-growth subsystem failure rates

3. the equivalent number of system level demonstration failures, which is the product of
the previous two estimates.

4. The approximate LCB for the final system MTBF at a given confidence level, which
is a function of the equivalent amount of system level demonstration test time and the
equivalent number of system level demonstration failures.

In equation form, these system level estimates are, respectively:

T,es = minlpy, fori=1..K (28)

A

K
psys = Z bi (29)
i=1
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n 1 - . . . .
where p, =—— and M, = the demonstration or equivalent demonstration MTBF estimate
D,i
for subsystem 1.

Npge = Tpsps X Psys (30)

2T
LCB, = —235 (31)

y 2
A2ng gs+2r

2.2.2.5 Calculation of Testing Costs. SSPLAN can be used to calculate the cost of
carrying out a subsystem reliability growth plan for any given solution. The model does not
address the initial start-up, or fixed costs since they are the same for any solution. The model
does address all costs that are a function of the number of failures and all costs that are a function
of time, as shown respectively in the following formula:

Cro =  IAE[FE@MIXC, ), +Tx(C;),} (32)

ic{all subsystems}
In (32), for each subsystem i, T, denotes the amount of test time, E [F,-(T,. )] is the expected

number of failures by time T;, ( C; ), is the cost per failure, and ( C; ), is the cost per unit of

time (usually per hour). So, the total testing cost, C;,,, , 1s the sum, over all subsystems, of the
costs associated with testing each subsystem.

Once again, it is useful to treat growth and non-growth subsystems separately.

2.2.2.5.1 Calculating Cost for Growth Subsystems. For a given solution, we can
calculate the cost contribution to Cr,, of a growth subsystem i in terms of Tg; and growth

parameters A;, f; by directly using (32) with T; = Tg,.. Note by (1), £ [ Fi ( Te. .)] = A TG"'T ;
Alternately, we can express this cost in terms of the achieved subsystem failure intensity,

p:.i (Tg,), and A;, B; . To write the cost equation in terms of the subsystem failure intensity, we
begin by obtaining an expression for T;;; from (8):

pG,i(TG,i ) = 40 Tcﬁ,'}_l (/Zi’lgi’TG,i>O) (33)
Isolating the T term on one side of (33) yields:

Pg.i ( Ts, )

i (34)

g-1
TG.i =

Raising both sides of (34) to the 1/( B, -1) power:
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_l 2, ( T, )][ﬁ]
gl

T_ .
[/m.][‘_/m

G

(Note S, #1 since subsystem i is a growth subsystem.)

Substituting from (2) yields the following intermediate result:

4L L
Tei = [pG.i(TG,i)] [ai}[’liﬂf](lzi] (0<ai<l) (36)
~ Now, to obtain an expression for £ [F(T G, .')], we begin with (1):
E[F(Ts:)] = 4 T/ (37)

Substituting for 7;;; from (36) yields:

&)
E[F"(TG-")] = /li[pG,i(TG,i)] “ [’Zilei] “ (38)
Rearranging terms in (38) yields:
Wl {4 )
E[F"('TG"')] = 4 ( aiJ[pG,i.(TG,i )] (a' }ﬂ,[f_:J (39

Finally, the cost contribution in (32) of growth subsystem i can be expressed in terms of its
failure intensity using (39) and (36):

C; [pG.i (TG,i )] = [pG.i (TG.i )H ;ﬂ—J /Z,-( Ha’%) ﬂ.[f—) (Cr )i
(40)

e Ha s sl

' 2.2.2.5.2 Calculating Cost for Non-growth Subsystems. To obtain the cost
contribution of a non-growth subsystem, we use (16) to express E[E(T D, )] in terms of 7, and

MD‘,.:
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TDi
M;_.- ](CF ), + To.i(Cp ), (41) |

C,.[TD.i] = (
where M, = pp,

2.2.2.6 Methodology for a Fixed Allocation of Subsystem Failure Intensities. The
methodology utilizes a fixed allocation, a;, of p¢ sys to each growth subsystem i. Thus
pac.i (Ta,) = aipcsys. For this allocation, SSPLAN first determines if a solution exists that
satisfies the criteria given by the user during the input phase. Specifically, SSPLAN checks to
see if the desired probability of acceptance can be achieved with the given failure intensity
allocations and maximum subsystem test times. If a solution does exist, SSPLAN will proceed
to find the solution that meets the desired probability of acceptance within a small positive
number epsilon.

2.2.2.6.1 Determining the Existence of a Solution. To determine if a solution 1s
possible, SSPLAN uses (8) and (9) for each subsystem, with T set to the subsystem’s maximum
test time, to calculate the maximum possible MTBF for each subsystem. The maximum
subsystem MTBF is multiplied by its failure intensity allocation to determine its influence on the
system MTBF. For example, if a subsystem can grow to a maximum MTBF of 1000 hours and it
has a failure intensity allocation of 0.5 (that is, its final failure intensity accounts for half of the
total final failure intensity due to all of the growth subsystems), then that particular subsystem
will limit the combined growth subsystem maximum MTBF to 500 hours. In other words, the

maximum MTBF to which the growth portion of the system can grow, MTBF;  , is the

minimum of the products (subsystem final MTBF multiplied by the subsystem failure intensity
allocation) from among all the growth subsystems. :

The probability of acceptance, P,, is then estimated using MTBF, . If the estimated
P, is less than the desired P,, then no solution is possible within the limits of estimation

precision for P,, and SSPLAN will stop with a message to that effect.

2.2.2.6.2 Finding the Solution. On the other hand, if the estimated P, is greater than or
equal to the desired P,, then a solution exists. If, by chance, the desired P, has been met
(within a small number epsilon) then SSPLAN will use MTBF; . as its solution. It is more
likely, however, that the estimated P, corresponding to MTBF; ,, exceeds the requirement,

meaning that the program resulting in MTBFs.5s  contains more testing than is necessary to
achieve the desired P,. SSPLAN proceeds, then, to find a value for MTBF¢.ss that meets the
desired P, within epsilon.

To save time, P, is initially estimated using a reduced number of iterations equal to one
tenth of the requested number. As soon as the estimated P, approaches the desired P,, the full
number of iterations is used.
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For a given fixed failure intensity allocation, P, increases as MTBF, , increases. Every

value of MTBFGc.5s determines a unique set of reliability growth curves, and thus a unique P,.
To find the set of growth curve test times that give rise to the desired P,, SSPLAN first finds the
upper and lower bounds for MTBF, . The initial upper bound for MTBF; . is the value

sys ° sys

found in verifying the existence of a solution; this value is the maximum possible value for

MTBF, , (based on the maximum test times inputted by the user). The initial lower bound for
MTBF, ,, is chosen arbitrarily; if the value chosen results in a P, that is higher than the desired

P,, then the lower bound for MTBF

than the desired P,. At that point, upper and lower bounds for MTBFc,ss have been
established, and SSPLAN uses a linear interpolation to find the value of MTBFG, s that gives
rise to an estimated P, that meets the desired P,. At each step of the search, MTBF;  is

1s successively decreased until the resulting P, is less

,SYS

updated using the following equation (actually, the algorithm does all comparisons in terms of
failure intensities, but the equation below shows the comparisons in terms of MTBFs to be
consistent with Reference [4]):

(MTBFG.sys )NEW —( MTBFG.sys )LB _ (PA )GOAL '-( P, )LB
(MTBFG"Y’ )UB —( MTBFG.sys )LB (PA )UB _( P, )LB

(42)

where (MTBF,
MTBF; .5 (P,) s
preceding MTBF,;

to be used in the search algorithm.

)UB and (MT BFg, sys) ,p Tefer to the upper and lower bounds, respectively, for

and ( P, ) .5 refer to the estimated P, values associated with each of the

values, respectively; and (MT BF; )NEW is the new value of MTBF,

sys G.sys

The bounds are systematically updated during the search as follows. If the estimated
value of P, associated with (MTBFG, ss )z, is less than the desired probability of acceptance,

( P, ) o then (MTBFG. s) vew D€comes the new lower bound for the next search. If the

 estimated P, is greater than the desired P,, then (MT BF, becomes the new upper

G.sys )NEW
bound. The solution is found when the estimated P, is within epsilon of the desired P, or when
the lower and upper bounds on MTBFG, s are within epsilon of each other.
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3  RELIABILITY GROWTH TRACKING

3.1  Introduction. This section contains material from MIL-HDBK-189 [1] on the AMSAA
Continuous Tracking Model. In addition, it presents the AMSAA Discrete Tracking Model
developed in [2] and an AMSAA subsystem level tracking model (SSTRACK) from [3].

3.1.1 Definition and Objectives of Reliability Growth Tracking. Reliability growth
tracking is a process that allows management the opportunity to gauge the progress of the
reliability effort for a system by obtaining a demonstrated numerical measure of the system
reliability during a development program based on test data. Some objectives of reliability
growth tracking include:

e determining if system reliability is increasing with time (i.e., growth is occurring) and
to what degree (i.e., growth rate), and

e - estimating the demonstrated reliability - a reliability estimate based on test data for
the system configuration under test at the end of the test phase. This latter estimate is
based on the actual performance of the system tested and not on some future
configuration.

Reliability growth tracking allows for the situation where the configuration of the system
may be changing as a result of the incorporation of corrective actions to problem failure modes.
In the presence of reliability growth, the data from earlier configurations may not be
representative of the current configuration of the system. On the other hand, the most recent test
data, which would best represent the current system configuration, may be limited so that an
estimate based upon the recent data would not, in itself, be sufficient for a valid determination of
reliability. Because of this situation, reliability growth tracking may offer a viable method for
combining test data from several configurations to obtain a demonstrated reliability estimate for
the current system configuration, provided the reliability growth tracking model adequately
represents the combined test data.

3.1.2 Managerial Role. The role of management in the reliability growth tracking
process is twofold:

e to systematically plan and assess reliability achievement as a function of time and
other program resources (such as personnel, money, available prototypes, etc.,) and,

s to control the ongoing rate of reliability achievement by the addition to or reallocation
of these program resources based on comparisons between the planned and
demonstrated reliability values.

To achieve reliability goals, it is important that the program manager be aware of reliability
problems during the conduct of the development program so that effective system design
changes can be funded and implemented. It is essential, therefore, that periodic assessments
(tracking) of reliability be made during the test program (usually at the end of a test phase) and
compared to the planned reliability goals. A comparison between the assessed and planned
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values will suggest whether the development program is progressing as planned, better than
planned, or not as well as planned. Thus, tracking the improvement in system reliability through
quantitative assessments of progress is an important management function.

3.1.3 Types of Reliability Growth Tracking Models. Reliability growth tracking
models are distinguished according to the level at which testing is conducted and failure data are
collected. They fall into two categories: system level and subsystem level. For system level
reliability growth tracking models, testing is conducted in a full-up integrated manner, failure
data are collected on an overall system basis, and an assessment is made regarding the system
reliability. For subsystem level reliability growth tracking models, the subsystems are tested and
the failure data are collected on an individual subsystem basis -- the subsystem data are then
“rolled up” to arrive at an estimate for the demonstrated system reliability.

System level reliability growth tracking models are further classified according to the
usage of the system. They fall into two groups -- continuous and discrete models -- and are
defined by the type of outcome that the usage provides. Continuous models are those that apply
to systems for which usage is measured on a continuous scale, such as time in hours or distance
in miles. For continuous models, outcomes are usually measured in terms of an interval or
range; for example, mean time/miles between failures. Discrete models are those that apply to
systems for which usage is measured on an enumerative or classificatory basis, such as pass/fail
or go/no-go. For discrete models, outcomes are recorded in terms of distinct, countable events
that give rise to probability estimates.

3.1.4 Model] Substitution.
List of Notation
Discrete Parameters:

number of trials = sample size
success

failure

number of successes

number of failures
unreliability

reliability

WC%%”’”’?Z

Continuous Parameters:

MTTF mean time/trials to failure
MTBF mean time/trials between failures

In general, continuous models are designed for continuous data, and discrete models are
designed for discrete data. In the event a designated model is unavailable for use, it may be
possible to use a continuous model for discrete data or a discrete model for continuous data. The
latter case is generally not a practical option, though. (The AMSAA Subsystem Tracking Model,
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for example, is a continuous model that may be used with discrete data, subject to the conditions
mentioned at the end of this paragraph.) In cases involving model substitution, the “substitute”
model is used as an approximation for the intended model, and the original data appropriate for
the intended model must be converted to a format appropriate for the substitute model. Note that
in applying a continuous model to discrete data, the results of the approximation improve as the
number of trials increases and the probability of failure decreases.

By way of an example, we show a method for converting discrete data to a continuous
format and vice versa. Suppose that from a sample size of N =5 trials the following outcomes

are observed, where S denotes a success and F denotes a failure:

S § § § F

The number of successes, NS, is four; the number of failures, NF, is one; and N = NS + NF .

To begin, note that in discrete terms:

NE

N (1)

U = probability( failure) =

The reciprocal of U, namely N/NF, may be viewed as a measure of the number of trials to the
number of failures, MTTF, thus allowing a continuous measure to be related to a discrete
measure:

1
MTTF = — 2
- )

In the example, MTTF =5 and MTBF =4, éo that:
MTBF = MTTF -1 3)
Substituting (2) into (3) and noting that R =1-U results in:
1 R

MTBF = —-1 = ——— @)
U 1-R

Equation (4) is used to convert a discrete measure to a continuous measure. To convert a
continuous measure to a discrete measure, rearrange (4) and solve for R:

MTBF +1 = TR (5)

(6)
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3.2  System Level Reliability Growth Tracking Models.
3.2.1 Continuous Tracking Models.

3.2.1.1 Background and Basis for the AMSAA Continuous Tracking Model.

List of Notation

t cumulative test time when design modification 1 is made

K final entry in a sequence of test times; point where the
last design modification is made

A4 constant failure rate during i-th time interval

F, number of failures during i-th time interval

6. mean value function for F,

f a particular realization of F;

e exponential function

t cumulative test time

F(t) total number of system failures by time t

(t) mean value function for F(t).

o) failure rate for configuration i where y €[t,.,,¢,)

p(t) instantaneous system failure rate at time t; also referred
to as the failure intensity function

A scale parameter of parametric function p(t); (A>0)

¥ shape parameter of parametric function p(t); (,6’ > 0)

m(t) instantaneous mean time between failures at time t

T total test time

F total observed number of failures by time T

X, cumulative time to i-th failure

A denotes an estimate when placed over a parameter

L lower confidence coefficient

U upper confidence coefficient

Y desired confidence level

- denotes an unbiased estimate when placed over a
parameter

o significance level

The AMSAA Continuous Reliability Growth Tracking Model may be used to track the
reliability improvement of a system during a development test phase for which usage is
measured on a continuous scale. The model may also be used for tracking the reliability of one-
shot (discrete) systems if there are a large number of trials and the system demonstrates high
reliability during test.
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The model is designed for tracking system reliability within a test phase and not across
test phases. Accordingly, the basis of the model is described in the following way. Let the start
of a test phase be initialized at time zero, and let 0=1¢, <t <t, <...<t, denote the cumulative

test times on the system when design modifications are made. Assume the system failure rate is
constant between successive £,'s , and let 4, denote the constant failure rate during the i-th time

interval [¢,_,,¢,). The time intervals do not have to be equal in length. Based on the constant
failure rate assumption, the number of failures F, during the i-th time interval is Poisson

distributed with mean &, = 4,(¢,-¢,_,) .
That is,

f -8
Prob(F, = f) = LQﬂe_ (f=012,..) %)

During developmental testing programs, if more than one system prototype is tested and if the
prototypes have the same basic configuration between modifications, then under the constant

failure rate assumption, the following are true:

o the time ¢, may be considered as the cumulative test time to the i-th modification, and

s F, may be considered as the cumulative total number of failures experienced by all
system prototypes during the i-th time interval [t,._l ,t,.).
The previous discussion is summarized graphically:
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Failure Rate

A'2
Ag .
A, Ag
| A1 1 1
to t‘ tz t3 t4
| |
Phase 1 { Phase 2 { Phase 3

Figure 1. Failure Rates Between Modifications.

|

Let t denote the cumulative test time, and let F(t) be the total number of system failures
by time t. Iftis in the first time interval:

[ 1 I §
0 t t, ty t,
Figure 2. Time Line for Phase 2 (t in first time interval).
then F(t) has the Poisson distribution with mean A, ¢. Now if t is in the second time interval:
| 1 X 1 d
0 t, t t, t,

Figure 3. Time Line for Phase 2 (t in second time interval).

then F(t) is the number of system failures F| in the first time interval plus the number of system
failures in the second time interval between ¢, and t. The failure rate for the first time interval is
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A, , and the failure rate for the second time interval is A4,. Therefore, the mean of F(t) is the sum
of the mean of F, = 4, ¢, plus the mean number of failures from ¢, to t, whichis 4, (t - tl). That
is, F(t) has mean &(r)=4 1, + /12(t - t,).

When the failure rate is constant (homogeneous) over a test interval, then F(t) is said to
follow a homogeneous Poisson process with mean number of failures of the form A¢. When the

failure rates change with time, e.g., from interval 1 to interval 2, then under certain conditions,
F(t) is said to follow a nonhomogeneous Poisson process (NHPP). In the presence of reliability
growth, F(t) would follow a NHPP with mean value function:

o) = [p(dy 8)

where Ay) =4, ,y€[t,,,t;). From (7), for any ¢ >0,

[a(t)]f e o .

7 (f=012,.) 9)

Prob[F(t) = f]

The integer-valued process {F (t),t > O} may be regarded as a NHPP with intensity
function p(z). The physical interpretation of p(t) is that for infinitesimally small At, o) At
is approximately the probability of a system failure in the time interval (t, t+At), that is, it is
approximately the instantaneous system failure rate. If ,o(t) = A, a constant failure rate for all t,
then a system is experiencing no growth over time, corresponding to the exponential case. If
p(t) is decreasing with time, (/%1 >A,> 4, ) , then a system is experiencing reliability growth.
Finally, p(t) increasing over time indicates deterioration in system reliability.

. Based on the learning curve approach, which is outlined in detail in the section on the
AMSAA Discrete Reliability Growth Tracking Model, the AMSAA Continuous Reliability
Growth Tracking Model assumes that ,o(t) may be approximated by a continuous, parametric
function. Using a result established for the Discrete Model:

E[F(t)] = A’ (10)

and the instantaneous system failure rate p(t) is the change per unit time of E[F(t))]:
d f-1
o(t) = = E[F@)] = Apt (4,8.4>0) (11)

With a failure rate ,o(t) that may change with test time, the NHPP provides a basis for
describing the reliability growth process within a test phase.
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Figure 4. Parametric Approximation to Failure Rates Between Modifications.

3.2.1.2 The AMSAA Continuous Reliability Growth Tracking Model. The AMSAA
Continuous Reliability Growth Tracking Model assumes that within a test phase failures are
occurring according to a nonhomogeneous Poisson process with failure rate (intensity of failures)

represented by the parametric function:
plt) = Apt7 (1, 4,t>0) (12)

where the parameter A is referred to as the scale parameter because it depends upon the unit of
measurement chosen for t, the parameter /Z is referred to as the growth or shape parameter
because it characterizes the shape of the graph of the intensity function (Equation (12) and
Figure 4), and t is the cumulative test time. Under this model the function:

mt) = % = (4] (13)

is interpreted as the instantaneous mean time between failures (MTBF) of the system at time t.
When t corresponds to the total cumulative time for the system,; that is, t=T, then m(T) is the
demonstrated MTBF of the system in its present configuration at the end of test.
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m(t)=[48 T | - m(T)

MTBF

e e i,

Figure 5. Test Phase Reliability Growth Based on
AMSAA Continuous Tracking Model.

Note that the theoretical curve is undefined at the origin. Typically the MTBF during the initial
test interval [O,tl] is characterized by a constant reliability with growth occurring beyond ¢, .

_ Cumulative Number of Failures

The total number of failures F(t) accumulated on all test items in cumulative test time t is
a Poisson random variable, and the probability that exactly f failures occur between the initiation
of testing and the cumulative test time t is:

[6®] e

Prob[F(t)=f] = 5

(14)

in which 6(¢) is the mean value function; that is, the expected number of failures expressed as a

function of test time. To describe the reliability growth process, the cumulative number of
~ failures is a function of the form &(¢)=A¢”, where A and g are positive parameters.

Number of Failures in an Interval
The number of failures occurring in the interval from test time ¢, until test time r,, where

t, > ¢, is a Poisson random variable with mean:
o,)-6) = Al -of) (15)

According to the model assumption, the number of failures that occur in any time interval is
statistically independent of the number of failures that occur in any interval which does not
overlap the first interval, and only one failure can occur at-any instant of time.
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Intensity Function
The intensity function in (12) is sometimes referred to as a failure rate; it is not the failure
rate of a life distribution, rather it is the failure rate of a process, namely a NHPP.

Option For Individual Failure Time Data

Estimation Procedures For Model

Modeling reliability growth as a nonhomogeneous Poisson process permits an assessment
of the demonstrated reliability by statistical procedures. The method of maximum likelihood
provides estimates for the scale parameter 4 and the shape parameter £, which are used in the

estimation of the intensity function p(t) in (12). In accordance with (13), the reciprocal of the

current value of the intensity function is the instantaneous mean time between failures (MTBF)
for the system. Procedures for point estimation and interval estimation for the system MTBF are
described in more detail. A goodness-of-fit test to determine model suitability is also described.

The procedures outlined in this section are used to analyze data for which (a) the exact
times of failure are known and (b) testing is conducted on a time terminated basis or the tests are
in progress with data available through some time. The required data consist of the cumulative
test time on all systems at the occurrence of each failure as well as the accumulated total test
time T. To calculate the cumulative test time of a failure occurrence, it is necessary to sum the
test time on every system at the point of failure. The data then consist of the F successive failure
times X, < X, < X, <...< X that occur prior to T. This case is referred to as the Option for

Individual Failure Time Data.

Point Estimation
The method of maximum likelthood provides point estimates for the parameters of the
failure intensity function (12). The maximum likelihood estimate (mle) for the shape parameter
pis:
g = FF (16)
FiInT-) InX, L

i=]

By equating the observed number of failures by time T (namely F) with the expected number of
failures by time T (namely E[F(T)]) and by substituting mle’s in place of the true, but unknown,
parameters in (10) we obtain:

~

F = AT (17)

from which we obtain an estimate for the scale parameter A :

i = — (18)
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For any time t > 0, the failure intensity function is estimated by:
pO = g (19)

In particular, (19) holds for the total test time T. By substitution from (17), the estimator p(T)
can be written as:

. NP (AT’ - (F
AT = AT = ﬂ( J = ﬁ(—) (20)
T T
where F/T is the estimate of the intensity function for a homogeneous Poisson process. Hence

the fraction (1 - ,5’) of the initial failure intensity is effectively removed by time T, resulting in
(20).

‘ Finally, the reciprocal of ,b(T) provides an estimate of the mean time between failures of
the system at the time T and represents the system reliability growth under the model:

() = —— - (,iﬁTf’"' ' 1)

Interval Estimation

Interval estimates provide a measure of the uncertainty regarding a parameter. For the
reliability growth process, the parameter of primary interest is the system mean time between
failures at the end of test, m(T). The probability distribution of the point estimate for the
intensity function at T, ,b(T ) , 1s the basis for the interval estimate for the true (but unknown)

value of the intensity function at T, o(T).

. These interval estimates are referred to as confidence intervals and may be computed for

selected confidence levels. The values in Table 1 facilitate computation of two-sided confidence
intervals for m(T) by providing confidence coefficients L and U corresponding to the lower
bound and upper bound, respectively. These coefficients are indexed by the total number of
observed failures F and the desired confidence level y. The two-sided confidence interval for
m(T) is thus:

L, m(T) < m(T) < U, mi(T) (22)

Table 2 may be used to compute one-sided interval estimates (lower confidence bounds) for
m(T) such that:

L., &(T) < m(T) (23)

Ve
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Note that both tables are to be used only for time terminated growth tests. Also, since the
number of failures has a discrete probability distribution, the interval estimates in (22) and (23)

are conservative; that is, the actual confidence level is slightly larger than the desired confidence
level y.
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TABLE 1. LOWER (L) AND UPPER (U) COEFFICIENTS
FOR CONFIDENCE INTERVALS FOR MTBF FROM
TIME TERMINATED RELIABILITY GROWTH TEST

Y 80 .90 95 ' 98
F L U L U. L U L U
2 261 18.66 .200 38.66 159  78.66 124 198.7
3 333 6.326 263 9.736 217 1455 174 24.10
4 385 4.243 312 5.947 262 8.093 215 11.81
5 426 3.386 352 4517 300 5.862 250  8.043
6 459 2915 385 3.764 331 4.738 280 6.254
7 487 2.616 412 3.298 358 4.061 305 5.216
8 511 2.407 436 2981 382  3.609 328 4.539
9 531 2254 457  2.750 403  3.285 349 4.064
10 549  2.136 476 2.575 421 3.042 367  3.712
11 565 2.041 492 2436 438 2.852 384  3.441
12 S79  1.965 507 2.324 453 2.699 399 3.226
13 592 1.901 521 2.232 467 2.574 413 3.050
14 604 1.846 533 2153 480  2.469 426  2.904
15 614 1.800 545 2.087 492 2379 438  2.781
16 624 1.759 556  2.029 503 2.302 449  2.675
17 633 1.723 565 1978 S13 2235 460 2.584
18 642 1.692 575 1.933 523 2.176 470 2.503
19 650 1.663 583 1.893 532 2.123 479 2432
20 657 1.638 591 1.858 540 2.076 488 2.369
21 664 1615 599  1.825 548  2.034 496 2313
22 670 1.594 606 1.796 556 1.996 504 2.261
23 676 1574 613 1.769 563 1.961 S11 2215
24 682 1.557 619 1.745 S70 1.929 518 2.173
25 687 1.540 625 1.722 576 1.900 525 2.134
26 692 1.525 631 1.701 582 1.873 531 2.098
27 697 1.511 636 1.682 588 1.848 537 2.068
28 702 1.498 641 1.664 594  1.825 543 © 2.035
29 706 1.486 .646  1.647 599 1.803 .549  2.006
30 g1l 1475 651  1.631 604 1.783 554~ 1.980
35 729 1.427 672 1.565 627 1.699 579 1.870
40 745 1.390 690 1.515 646  1.635 599 1.788
45 758  1.361 705 1476 662 1.585 617  1.723
50 769 1.337 718 1.443 676 1.544 632 1.671
60 787 1.300 739 1.393 700 1.481 657  1.591
70 801 1.272 756 1.356 718  1.435 678 1.533
80 813  1.251 769 1.328 734 1.399 695 1.488
100 831 1219 791 1.286 758  1.347 722 1.423
y = confidg¢nce level
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-2 -2
y4 4
For F>100, L = 1+'5*%/ d U =~ 1—'5*%/
or > 0 ( \/ﬁ- an -\/ﬁ

in which z Y is the 100 x (.5 +%) —th percentile of the standard normal distribution.
S+
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LOWER CONFIDENCE INTERVAL COEFFICIENTS FOR MTBF FROM TIME
TERMINATED RELIABILITY GROWTH TEST

Confidence Level y Confidence Level Y

.60 .70 .80 .90 .95 .99 F 50 .60 .70 .80 90 .95 .99

TABLE 2.
F .50
2 .761
3 .823
4 .860
5 .884
6 901
7 914
8 924
9 932
10 938
11 943
12 .948
13 951
114 955
15 958
16 .960
17 .962
18 964
19 966
20 968
21 969
22 971
23 972
24 973
25 974
26 975
27 .976
28 977
29 978
30 978
31 979
32 980
33 980
34 .981-
35 .981
36 982
37 982
38 983
39 983
40 984
41 .984
42 984
43 985
44 985
45 985
46 986
47 .986
48 986
49 987
50 987

606 480 369 261 200 .124 |51 [.987 939 .89t .838 771 .720 .635
680 559 447 333 263 174 52 |.987 940 892 840 773 .722 .637
727 611 501 385 312 215 53 |.988 941 893 841 775 724 .640
760 .649 542 426 352 250 54 [.988 941 894 843 777 727 .643
784 678 574 459 385 .280 55 [.988 942 895 844 778 729 .645
.803 .701 .600 .487 412 305 56 |.988 942 896 .845 .780 .731 .648
.818 .720 .622 SIt 436 .328 57 |.988 .943 897 .847 782 .733 650
830 736 640 531 457 349 58 |.989 944 898 848 .784 735 653
841 749 656 549 476 367 [59 [989 944 899 849 785 737 .655
.849 761 670 .565 492 384 60 |.980 945 900 .850 787 .739 .657
.857 .77t 683 579 507 399 61 |.989 945 901 °.852 788 741 .659 -
.864 780 .694 592 521 413 62 [.989 946 901 853 .790 742 .662
.870 788 704 604 533 426 63 [.990 946 902 854 .792 744 664
875 .795 713 614 545 438 64 |.990 947 903 855 793 746 .666
.880 .802 721 .624 556 .449 65 [.990 947 904 856 .794 748 .668
.884 808 .729 .633 565 .460 66 }.990 948 905 857 796 .749 670
.888 814 736 642 575 470 67 |.990 948 905 .858 .797 751 .672
.891 819 .742 650 583 479 68 990 948 906 .859 799 752 .674
.895 823 .748 657 591 488 69 |.990 949 907 860 800 .754 676
.898 .828 754 664 599 496 70 1991 949 907 .861 .801 .756 .678
900 832 759 670 .606 .504 71 ].991 950 908 .862 .803 .757 .680
903 836 .764 676 613 511 72 1991 950 909 .863 .804 759 .68l
905 .839 769 682 619 518 73 1991 951 909 .864 .805 .760 .683
908 .842 773 687 .625 525 74 1.991 951 910 865 .806 .761  .685
910 .846 777 692 631 .53l 75 ]1.991 951 911 866 .807 .763 .687
912 849 781 .697 .636 537 76 1.991 952 911 866 .809 .764  .688
914 851 .785 702 .641 543 |77 |.991 952 912 867 .8i0 .766 .690
915 854 788 706 .646 .549 78 1.992 952 912 868 .811 .767 .692
917 857 .792 .711 651 .554 79 1992 953 913 869 812 .768 .693
919 859 795 715 656 .560 80 ].992 953 914 870 813 .769 .695
920 861 .798 719 .660 .565 81 1.992 953 914 871 814 771 .696
922 863 801 722 .664 570 82 (992 954 915 871 815 772 698
923 866 .804 726 .668 574 83 1.992 954 915 872 816 .773 699
924 868 806 729 672 579 84 1.992 .84 916 .873 817 774 .70l
926 869 .809 .733 .676 .583 85 992 955 916 874 818 .776 .702
927 871 .81l 736 .680 .587 86 (.992 955 917 .874 819 777 704
928 873 814 739 683 591 87 ].992 955 917 875 820 .778 .705
929 875 816 .742 687 .595 88 [.992 956 918 876 .821 .779 .707
930 .876 .818 .745 690 599 | 89 |.993 956 918 876 .822 .780 .708
931 878 .820 .747 693 .603 90 [.993 956 919 877 .823 781 .709
932 879 822 750 .696 .606 91 [.993 956 919 878 824 782 .71l
933 881 824 753 699 610 92 1.993 957 920 878 .825 783 712
934 882 826 .75 .702 613 93 [.993 957 920 879 .826 .784 713
935 884 828 .758 .705 .617 94 |.993 957 920 .880 .826 .785 .714.
935 .88 .830 .760 .707 .620 95 [.993 957 921 880 .827 .786 716
936 886 .832 .762 710 .623 96 1.993 958 921 .881 .828 .787 717
937 .888 833 .764 713 626 97 [.993 958 922 881 .829 .788 .718
938 889 835 767 .75 .629 98 |.993 958 922 .882 .830 .789 719
939, 890 .837 .769 718 632 99 1993 958 923 883 831 .790 .72l
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Goodness-of-Fit

For the case where the individual failure times are known, a Cramér-von Mises statistic is
used to test the null hypothesis that a nonhomogeneous Poisson process with failure intensity
function (12) properly describes the reliability growth of a system. To calculate the statistic, an
unbiased estimate of the shape parameter /£ is used: '

F—1-
g = _F_ﬁ (24)

This unbiased estimate of / is for a time terminated reliability growth test with F observed
failures. The goodness-of-fit statistic is:

R 7 i1
C oF ZU : ‘TF‘} @

where the failure times X, must be ordered sothat 0 < X, < X, < ... < X,.

The null hypothesis that the model represents the observed data is rejected if the statistic
C; exceeds the critical value for a chosen significance level a. Critical values of C, for

a = .20, .15, .10, .05, .01 are shown in Table 3 where the table is indexed by F, the total
number of observed failures.
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TABLE 3. CRITICAL VALUES FOR CRAMER-VON MISES GOODNESS-OF-FIT TEST
FOR INDIVIDUAL FAILURE TIME DATA

a .20 135 10 .05 01
F
2 138 .149 .162 175 186
3 121 135 154 .184 23
4 121 134 155 191 .28
5 121 137 .160 199 30
6 123 139 162 204 31
7 124 .140 ‘ 165 208 32
8 124 141 165 210 32
9 125 142 167 212 32
10 125 142 167 212 32
11 126 143 169 214 32
12 126 144 169 214 32
13 126 144 169 214 .33
14 126 144 169 214 .33
15 126 144 169 215 33
16 127 145 - 171 216 .33
17 127 145 A7 217 .33
18 127 146 A71 217 .33
19 127 146 A71 217 33
20 128 146 172 217 33
30 128 146 172 218 33
60 128 147 173 220 33
100 129 147 173 220 34

For F > 100 use values for F = 100.
a = significance level

Besides using statistical methods for assessing model goodness-of-fit, one should also
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in
Figure 6). These plots, derived from the failure data, provide a graphic description of test results
and should always be part of the reliability analysis.

Example

The following example demonstrates the option for individual failure time data in which
two prototypes of a system are tested concurrently with the incorporation of design changes.
(The data in this example are used subsequently for one of the growth subsystems in the example
for the AMSAA Subsystem Tracking Model - SSTRACK.) The first prototype 1s tested for
132.4 hours, and the second is tested for 167.6 hours for a total of T = 300 cumulative test hours.
Table 4 shows the time on each prototype and the cumulative test time at each failure
occurrence. An asterisk denotes the failed system. There are a total of F = 27 failures. Although
the occurrence of two failures at exactly 16.5 hours is not possible under the assumption of the
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model, such data can result from rounding and are computationally tractable using the statistical
estimation procedures described previously for the model. Note that the data are from a time
terminated test.

TABLE 4. TEST DATA FOR INDIVIDUAL FAILURE TIME OPTION

- (An asterisk denotes the failed system.)

Failure Prot. #1 Prot. #2 Cum Failure Prot. #1 Prot. #2 Cumulative

Number Hours Hours Hours Number Hours Hours Hours
1 2.6* .0 2.6 15 60.5 37.6* 98.1
2 16.5* .0 16.5 16 61.9* 39.1 101.1
3 16.5* .0 16.5 17 76.6* 55.4 132.0
4 17.0* .0 17.0 18 81.1 61.1* 142.2
5 20.5 9% 21.4 19 84.1% 63.6 147.7
6 25.3 3.8* 29.1 20 84.7* 64.3 149.0
7 28.7 4.6* 333 21 94.6* 72.6 167.2
8 41.8* 14.7 56.5 22 104.8 85.9* 190.7
9 45.5% . 17.6 63.1 23 105.9 87.1* 193.0
10 48.6 22.0* 70.6 24 108.8* 89.9 198.7
11 49.6 23.4* 73.0 25 132.4 119.5* 251.9
12 51.4* 26.3 77.7 26 132.4 150.1* 282.5
13 58.2* 35.7 93.9 27 132.4 153.7* . 286.1
14 59.0 36.5* 95.5 End 132.4 167.6 300.0

By using the 27 failure times listed under the columns labeled “Cumulative Hours” in
Table 4 and by applying (16), (18), (19) and (21) we obtain the following estimates. The point

estimate for the shape parameter is =0.716 ; the point estimate for the scale parameter is

A=0.454; the estimated failure intensity at the end of the test is H(T) = 0.0645 failures per
hour; the estimated MTBF at the end of the 300-hour test is t (T) = 15.5 hours. As shown in

Figure 6, superimposing a graph of the estimated intensity function (19) atop a plot of the
average failure rate (using six 50-hour intervals) reveals a decreasing failure intensity indicative
of reliability growth.
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Figure 6. Estimated Intensity Function Superimposed On Average
Failure Rate Plot From Observed Data.

Using (22), Table 1 and a confidence level of 90 percent, the two-sided interval estimate
for the MTBEF at the end of the test is [9.9, 26.1]. These results and the estimated MTBF
tracking growth curve (substituting t for T in (21)) are shown in Figure 7.
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Figure 7. Estimated MTBF Function With 90 Percent
Interval Estimate at T = 300 Hours.

Finally, to test the model goodness-of-fit, a Cramér-von Mises statistic is compared to the
critical value from Table 3 corresponding to a chosen significance level @ = 0.05 and total
observed number of failures F = 27. Linear interpolation is used to arrive at the critical value.
Since the statistic, 0.091, is less than the critical value, 0.218, we accept the hypothesis that the
AMSAA Continuous Reliability Growth Tracking Model is appropriate for this data set.

Option for Grouped Data
List of Notation

K number of intervals (or groups) or the last group
1 interval number
t; time at beginning (or end) of interval
F observed number of failures in interval [z,_,,z,)
te total test time
n denotes an estimate when placed over a parameter
yi; shape parameter (5 > 0)
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Y

scale parameter (4 > 0)
instantaneous failure intensity at time t

2

instantaneous MTBF at time t

3
_—

S
N’

My MTBF for the last group

E, expected number of failures in the last group
Px failure intensity for the last group

F total observed number of failures

L lower confidence coefficient

U upper confidence coefficient

Y specified confidence level

E, expected number of failures in interval i

Ky number of intervals after recombination of intervals
O, observed number of failures in interval i

7 chi-squared value

Reliability growth parameters can be estimated in accordance with the AMSAA
Continuous Tracking Model even if the exact times of failure are unknown and all that is known
is the number of failures that occurred in each interval of time, provided there are at least three
intervals and at least two intervals have failures. This case is referred to as the Option for
Grouped Data. This section describes the estimation procedures and goodness-of-fit procedures
for analyzing such data and provides an example of model usage. In the following discussion,
the words “group” and “interval” are interchangeable.

Estimation Procedures for Model
The required data consist of the total number of failures in each of K intervals of test

time. The first interval always starts at test time zero so that t, =0. The groups do not have to

be of equal length. The observed number of failures in the interval from ¢,_, to ¢, is denoted by
F.

i

Point Estimation
The method of maximum likelihood provides point estimates for the parameters of the

model. The maximum likelihood estimate for the shape parameter £ is the value that satisfies
the following nonlinear equation:

K A B
ZF{"‘ s =l oy | o= 0 (26)

in which t, Int, is defined as zero.
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By equating the total expected number of failures to the total observed number of failures:

. K
ity = YF (27
i=1{
and solving for A, we obtain an estimate for the scale parameter:
K .
2.F
A= & (28)

B
tk

Point estimates for the intensity function o (t) and the mean time between failures
function m(t) are calculated as in the previous section that describes the Option for Individual
Failure Time Data; that 1s,

A) = Ap (44.t>0) (29)
ml) = [pO)]" (3.4, t>0) (30)

The functions in (29) and (30) provide instantaneous estimates that give rise to smooth
continuous curves, but these functions do not describe the reliability growth that occurs on a
~ configuration basis representative of grouped data. Under the model option for grouped data, the

estimate for the MTBF for the last group, M, , is the amount of test time in the last group
divided by the estimated expected number of failures in the last group:

t, -t
M, = X XL (31)

where the estimated expected number of failures in the last group EK is:
Ec = Ale-) (32)

From (31) we obtain an estimate for the failure intensity for the last group:

P = (33)

1
My
Interval Estimation
Approximate lower confidence bounds and two-sided confidence intervals may be

computed for the MTBF for the last group. Using (31) and Table 1, a two-sided approximate
confidence interval for M may be calculated from:
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L, My € M, £ U, M, (34)

F,r

and using (31) and Table 2, a one-sided approximate interval estimate for M, may be calculated
from:

Py

L, My < M 4 (35)

F.y
where F is the total observed number of failures and y is the desired confidence level.

Goodness-of-Fit

A chi-squared goodness-of-fit test is used to test the null hypothesis that the AMSAA
Continuous Reliability Growth Tracking Model adequately represents a set of grouped data. The
expected number of failures in the interval from ¢,_, to ¢, is approximated by:

Eo= Al -2, (36)
Adjacent intervals may have to be combined so that the estimated expected number of

failures in any combined interval is at least five. Let the number of intervals after this

recombination be K, and let the observed number of failures in the i-th new interval be O, and

the estimated expected number of failures in the i-th new interval be £ ;- Then the statistic:

A )2
7= f’f——————(o" -£) (37)
=l E,

is approximately distributed as a chi-squared random vanable with K, —2 degrees of freedom.

The null hypothesis is rejected if the z* statistic exceeds the critical value for a chosen

significance level. Critical values for this statistic can be found in tables of the chi-squared
distribution. '

Besides using statistical methods for assessing model goodness-of-fit, one should also
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in
Figure 6). Derived from the failure data, these plots provide a graphic description of test results
and should always be part of the reliability analysis.

Example

The following example uses aircraft data to demonstrate the option for grouped data.
(The data in this example are used subsequently for one of the growth subsystems in the example
for the AMSAA Subsystem Tracking Model - SSTRACK.) In this example, an aircraft has
scheduled inspections at intervals of twenty flight hours. For the first 100 hours of flight testing
the results are:
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TABLE 5. TEST DATA FOR GROUPED DATA OPTION

Observed Number of Failures
Start Time | End Time ,
0 20 13
20 40 16
40 60 5
60 80 8
80 100 7

There are a total of F = 49 observed failures from K = 5 intervals. Solution of (26) for 2 yields

an estimate of 0.753 for the shape parameter. From (28) the scale parameter estimate is 1.53.
For the last group, the intensity function estimate is 0.379 failures per flight hour and the MTBF
estimate is 2.6 flight hours. Table 6 shows that those adjacent intervals do not have to be

combined after applying (36) to the original intervals. Therefore, K, = 5.

TABLE 6. OBSERVED VERSUS ESTIMATE OF EXPECTED

NUMBER OF FAILURES FOR TEST DATA FOR GROUPED DATA OPTION

Observed Number of | Estimated Expected
Start Time End Time Failures Number of Failures
0 20 13 14.59
20 40 16 9.99
. 40 60 5 8.77
60 80 8 8.07 -
80 100 7 7.58

To test the model goodness-of-fit, a chi-squared statistic of 5.5 is compared to the critical
. value of 7.8 corresponding to 3 degrees of freedom and a 0.05 significance level. Since the
statistic is less than the critical value, the applicability of the model is accepted.

3.2.2 AMSAA Discrete Tracking Model. -

3.2.2.1 Background and Motivation for Model.

List of Notation

t
K(t)
c(t)
In

)

a

A

cumulative test time
cumulative number of failures by time t
cumulative failure rate by time t

natural logarithm function (base )
constant term representing the y-intercept of a linear equation
constant term representing the slope of a linear equation

scale parameter ( 4 > 0) of power function
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B shape parameter ( 4> 0) of power function; f=1-a
i configuration number
T cumulative number of trials through configuration 1

summation of
number of trials in configuration i

cumulative number of failures through configuration i
M.  number of failures in configuration i
E[K,] expected value of X,
fi probability of failure for configuration i
g, probability of failure for trial i
R, reliability for configuration i (or trial i)
A denotes an estimate when placed over a parameter

Reliability growth tracking methodology may also be applied to discrete data in a manner
that is consistent with the learning curve property observed by J.T. Duane for continuous data.
Accordingly, this section describes model development and maximum likelihood estimation
procedures for assessing system reliability for one-shot systems during development.

The motivation for the AMSAA Discrete Reliability Growth Tracking Model comes from
the learning curve approach for continuous data as follows.

Let t denote the cumulative test time, and let K(t) denote the cumulative number of
failures by time t. The cumulative failure rate, c(t), is the ratio:

oft) = —15(5—) (38)

While plotting test data from generators, hydro-mechanical devices and aircraft jet engines,
Duane observed that the logarithm of the cumulative failure rate was linear when plotted against
the logarithm of the cumulative test time:

Inc(t) = J-alnt (39)

By letting 6 =1In A for the y-intercept and by exponentiating both sides of (39), the cumulative
failure rate becomes:

c(t) = At™@ (40)
By substitution from (38),

R(t) At (41)
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. Multiplying both sides of (41) by t and letting /= 1-a, the cumulative number of failures by t
becomes:

K(t) = Atf (42)
This power function of t is the learning curve property for K(t), where 4,4>0.

3.2.2.2 Model Development. To construct the AMSAA Discrete Reliability Growth
Tracking Model, we use the power function developed from the learning curve property for K(t)
to derive an equation for the probability of failure on a configuration basis. We refer to this
situation where growth takes place on a configuration basis (and the number of trials in at least
one of the configurations is greater than one) as the grouped data option. In the presence of
reliability growth, the failure probability trend for the grouped data option appears graphically as
a sequence of decreasing, horizontal steps.

We then note the special case where the configuration size is one for all configurations,
develop an equation for the probability of failure, and refer to this special case as the option for
trial by trial data. In a growth situation, the failure probability trend for this option is described
graphically as a decreasing, smooth curve.

Model development proceeds as follows. Suppose system development is represented by
1 configurations. (This corresponds to i ~1 configuration changes, unless fixes are applied at the
end of the test phase, in which case there would be i configuration changes.) Let N, be the

number of trials during configuration 1, and let M, be the number of failures during
configuration i. Then the cumulative number of trials through configuration i, namely T,, is the
sum of the N, for all i:

T, = ZNi (43)

and the cumulative number of failures through configuration i, namely K, is the sum of the M,
forall i:

Ki = 2.M - (44)

We express the expected value of K, as E[Ki] and define it as the expected number of
failures by the end of configuration i. Applying the learning curve property to E[Kl] implies:

E[K,] = 2T/ - (45)
We introduce a term for the probability of failure for configuration one, namely f,, and

use it to develop a generalized equation for f, in terms of the T, and N,. From (45), the
expected number of failures by the end of configuration one is:
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AT/

E[Kl] = ’lTlﬂ = ffN, = f = (46)

Applying (45) again and noting that the expected number of failures by the end of configuration
two is the sum of the expected number of failures in configuration one and the expected number
of failures in configuration two, we obtain:

AT AT/
EK,] = AT/ = N, +f,N, = AT/ +f,N, = f, = ——iﬁ——L- (47)

2

By this method of inductive reasoning we obtain a generalized equation for the failure
probability, f;, on a configuration basis:

AT? - AT
f. = ___'_I\T__':L (48)

and use (48) for the grouped data option.

For the special case where N, = 1 for all i, (48) becomes a smooth curve, g, , that
represents the probability of failure for the option for trial by trial data:

g = Aif-ai-1) (49)

In (49), 1 represents the trial number. Note that T, =0, so that (48) reduces to (46) when i1 =1.
Also, for i=1 in (49), g, = 4. Using (48) we obtain an equation for the reliability (probability
of success) for the i-th configuration:

R, = 1-f, (50)°

and using (49) we obtain an equation for the reliability for the i-th trial:

R, = l-g, ' (1)
Equations (48), (49), (50) and (51) are the exact model equations for tracking the reliability
growth of discrete data using the AMSAA Discrete Reliability Growth Tracking Model.

3.2.2.3 Estimation Procedures. This section describes procedures for estimating the
parameters of the AMSAA Discrete Reliability Growth Tracking Model. It also includes an
approximation equation for calculating reliability lower confidence bounds and an example
illustrating these concepts.

The estimation procedures described below provide maximum likelihood estimates
(mle’s) for the model’s two parameters, A and , where A is the scale parameter and J is the

74



shape (or growth) parameter. The mle’s for A and P allow for point estimates for the probability
of failure:

. ______. _ e 52)

R = 1-%, (53)
for each configuration 1.

Point Estimation

Let Aand ,5’ be the mle’s for A and B respectively, 1.e. let (/i, ﬁ): (4, B) such that (A, B)
maximizes the discrete model likelihood function over the region 0 <R; <1 fori=1, ..., K. Let.
R: denote the corresponding estimate of R;. If 0<Ri<1 fori=1, ..., K then the point

(/l, -,6’) = (/i, ,5’) satisfies the following likelihood equations:

5r s M, o N,-M, 1o
e | AN vy o4
and
K M N, -M.
£_1s. i . i i N -
§[T" & {lﬂf—ﬂnﬁ] lNi—/ZT,.”MT,-ﬁJ} v

We recommend using the model mle’s only for this case. Situations can occur when the
likelihood is maximized at a point (,i , ﬁ) such that R ; =0 and (/i , ﬂ) does not satisfy Equations
(54) and (55). One such case occurs for the trial-by-trial model when a failure occurs on the first
trial. If one wishes to use the model in such an instance we suggest either (1) initializing the
model so that at least the first trial is a success or (ii) using the grouped version and initializing
with a group that contains at least one success. This should typically produce maximizing values
A, [ that satisfy Equations (54) and (55) with 0<Ri<1 fori=1, ... K. Procedure (i) is
especially appropriate if performance problems associated with an early design cause the initial
failure(s). Since the assessment of the achieved reliability will depend on the model '
initialization and groupings, the basis for the utilized data and groupings should be considered
part of the assessment. A goodness of fit test (such as the chi-squared test discussed in Section
3.2.2.4) should be used to explore whether the model provides a reasonable fit to the data and
groupings. If there is insufficient failure data to perform such a test, a binomial point estimate -
and lower confidence bound based on the total number of successes and trials would provide a
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. conservative assessment of the achieved reliability Rk under the assumption that R > R; fori=
..., K

From (54) and (55) we note the fbllowing data requirements for using the model:
Data Requirements

number of configurations (or the final configuration)
number of observed failures for configuration i

number of trials for configuration i

Nz xR

cumulative number of trials through configuration i

Interval Estimation
A one-sided interval estimate (lower confidence bound) for the reliability of the final
(last) configuration may be obtained from the approximation equation:

LcB, ~ 1-(1-&, )[i’z—l) (56)

n

where

LCB, = an approximate lower confidence bound at the gamma (y) confidence

level for the reliability of the last configuration, where v is a decimal
number in the interval (0,1)
R, = a maximum likelihood estimate for the reliability of the last
configuration
the total number of observed failures (summed) over all
configurations i, (i = 1..K)
Z‘i.m = the gamma percentile point of the chi-squared distribution with

i

n

n+2 degrees of freedom

3.2.2.4 Goodness-of-Fit. Provided there is sufficient data to obtain at least five expected
number of failures per group, a chi-squared goodness-of-fit test may be used to test the null
hypothesis that the AMSAA Discrete Reliability Growth Tracking Model adequately represents
a set of grouped discrete data or a set of trial by trial data. If these conditions are met, then one
may use the chi-squared goodness-of-fit procedures outlined previously for the Continuous
Reliability Growth Tracking Model. ‘

Besides using statistical methods for assessing model goodness-of-fit, one should also
construct an average failure rate plot or a superimposed expected failure rate plot (as shown in
Figure 6). Derived from the failure data, these plots provide a graphic description of test results
and should always be part of the reliability analysis.
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3.2.2.5 Example. The following example is an application of the grouped data option of

the AMSAA Discrete Reliability Growth Tracking Model for a system having four
configurations of development test data:

TABLE 7. TEST DATA FOR GROUPED DATA OPTION

Cumulative Number
_ Observed Number of Trials Through
Configuration of Failures in Number of Trials in Configuration i
Number, i Configuration i Configuration i T,
K=4 M, | N,
1 5 14 14
2 3 19 33
3 4 15 48
4 4 20 68
This is represented graphicalily as:
(M] = 5) (Mz = 3) (M3 = 4) (M4 = 4)
0 14 33 48 68
(N =14) (N2 =19) (N3 =15) (Ns = 20)
Ty T, T; Ta

Figure 8. Test Data for Grouped Data Option.

The solution of (54) and (55) provides mle’s for A and B corresponding to 0.595 and
0.780, respectively. Using (52) and (53) results in the following table:

TABLE 8. ESTIMATED FAILURE RATE AND ESTIMATED RELIABILITY BY

CONFIGURATION
Estimated Failure
Probability for Estimated Reliability for
Configuration Number, i Configuration i Configuration i
K=4 ' ﬁ R
1 333 667
2 234 .766
3 206 794
4 .190 810
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A plot of the estimated failure rate by configuration is:

Probability of Failure

.6

f,=.333
f,=.234 A
 £,=.206 A
f,=.190
1 | | -
14 33 48 68
Cumulative Number of Trials, T;
Figure 9. Estimated Failure Rate by Configuration.

78

<



and a plot of the estimated reliability by configuration is:

1.0 —

A
R4= 810

A
R3=.794

R)=.766

e

Ry=.667

Reliability
~3

| |

0 14 33 48 68
Cumulative Number of Trials, T,

P .
-

Figure 10. Estimated Reliability by Configuration.

Finally, (56) is used to generate the following table of approximate LCB’s for the reliability of
the last configuration:

TABLE 9. TABLE OF APPROXIMATE LOWER CONFIDENCE BOUNDS
(LCB’S) FOR FINAL CONFIGURATION

Confidence Level LCB
50 .806
75 .783
.80 177
.90 .761
95 . T47

3.3  Subsystem Level Reliability Growth Tracking Models.

3.3.1 AMSAA SSTRACK Model Description and Conditions For Usage. The
AMSAA Subsystem Tracking Model (SSTRACK) is a tool for assessing system level reliability
from lower level test results. The methodology was developed to make greater use of component
or subsystem test data in estimating system reliability. By representing the system as a series of
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independent subsystems, the methodology permits an assessment of the system level
demonstrated reliability at a given confidence level from the subsystem test data. This system
level assessment is permissible provided the:

e subsystem test conditions/usage are in conformance with the proposed system level
operational environment (as embodied in the Operational Mode Summary/Mission
Profile [OMS/MP)) and

e Failure Definitions/Scoring Criteria (FD/SC) formulated for each subsystem are
consistent with the FD/SC used for system level test evaluation. :

The SSTRACK methodology supports a mix of test data from growth and non-growth
subsystems. Statistical goodness-of-fit procedures are used for assessing model applicability for
growth subsystem test data. For non-growth subsystems, the model uses fixed configuration test
data in the form of the total test time and the total number of failures. The model applies the
Lindstrom-Madden method [4] for combining the test data from the individual subsystems.
Twenty-five subsystems can be represented by the current implementation of the model.
SSTRACK is a continuous model, but it may be used with discrete data if the number of trials is
large and the probability of failure is small.

_ A potential benefit of this methodology is that it may allow for reduced system level
testing by combining lower level subsystem test results in such a manner that system reliability
may be demonstrated with confidence. Another potential benefit is that it may allow for an
assessment of the degree of subsystem test contribution toward demonstrating a system
reliability requirement. Finally, as mentioned, it may serve as an effective means of combining
test data from dissimilar sources, namely growth and non-growth subsystems.

Besides the two provisos stated in the opening paragraph regarding OMS/MP
conformance and FD/SC consistency, a caveat in using the methodology is that high-risk
subsystem interfaces should be identified and addressed through joint subsystem testing. Also,
as in any reliability growth test program, growth subsystem configuration changes must be
properly documented for the methodology to provide meaningful results.

The primary output from the SSTRACK computer implementation is a table of .
approximate lower confidence bounds for the system reliability (MTBF) for a range of
confidence levels.

3.3.2 Methodology.

LIST OF NOTATION
A denotes an estimate when placed over a parameter
M Mean Time Between Failures (MTBF)
D demonstration
G growth
LCB Lower Confidence Bound
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Y gamma = confidence level

T (total) test time

N (total) number of failures

X chi-squared percentile point for df degrees of freedom and y
confidence

B ' beta = growth parameter from reliability growth tracking model

To be able to handle a mix of test data from growth and non-growth subsystems, the
methodology converts all growth subsystem test data to its “equivalent” amount of
demonstration test time and “equivalent” number of demonstration failures so that ali subsystem
results are expressed in a common format; namely, in terms of fixed configuration (non-growth)
test data. By treating growth subsystem test data in this way, a standard lower confidence bound
formula for fixed configuration test data may be used to compute an approximate system
reliability lower confidence bound for the combination of growth and non-growth data. The net
effect of this conversion process is that it reduces all growth subsystem test data to “equivalent”
demonstration test data while preserving the following two important equivalency properties:

The “equivalent” demonstration data estimators and the growth data estimators must
yield:
(1) the same subsystem MTBF point estimate and
(2) the same subsystem MTBF lower confidence bound.

In other words, the methodology maintains the following relationships, respectively:

M, = M, (57)
LCB (D) = LCB,(G) (58)
where

~ T. -

M, = =2 59

D N, (59)
2T

LCB,(D) = —=2 (60)
Xangs2,y

Reducing growth subsystem test data to “equivalent” demonstration test data using the
following equations closely satisfies the relationships cited above:

N, = =% - (61)
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toxte - o (62)
2 25

Py

The growth estimate for the MTBF, M ¢ » and the estimate for the growth parameter, ,6’ , are

described in the sections on point estimation for system level Continuous Reliability Growth
Tracking Models.

The model then uses the above equations to compute an approximate lower confidence
bound for the serial system reliability (MTBF) from non-growth subsystem demonstration data
and growth subsystem “equivalent” demonstration data as described in the following section on
the Lindstrém-Madden method.

3.3.3 Lindstrom-Madden Method. In addition to using the notation defined in the
previous section on Methodology, subsequent equations use the following notation:

LIST OF NOTATION

sys  system level
min  minimum of

K number of subsystems in serial system
p failure rate

1 subscript for subsystem number

z summation of

To compute an approximate lower confidence bound (LCB) for the system MTBF from
subsystem demonstration and “equivalent” demonstration data, the AMSAA SSTRACK model
uses an adaptation of the Lindstrém-Madden method by computing the following four estimates:

1. the equivalent amount of system level demonstration test time. (This estimate is a
reflection of the least tested subsystem because it is the minimum demonstration test
time of all the subsystems.),

2. the current system failure rate, which is the sum of the estimated failure rate from
each subsystem i,1=1..K, -

3. the “equivalent” number of system level demonstration failures, which is the product
of the previous two estimates, and

4. the approximate LCB for the system MTBF at a given confidence level, which is a

function of the equivalent amount of system level demonstration test time and the
equivalent number of system level demonstration failures.
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In equation form, these system level estimates are, respectively:

Tp 4 minT, fori = 1.K (63)
p sys = Z p i (64)
i=l
where
e (65)
‘ MD,i
M pi = thecurrent MTBF estimate for subsystem i
ND.sys = psys D \SyS$ (66) _
2T,
LCB, = ——>%— (67)

Xang o +2.r

3.3.4 Example. The following example is an application of the AMSAA Subsystem
Level Reliability Growth Tracking Model to a system composed of three subsystems: one non-
growth and two growth subsystems. Besides showing that SSTRACK can be used for test data
gathered from dissimilar sources (namely, non-growth and growth subsystems), this particular
example was chosen to show that system level reliability estimates are influenced by -

o the least tested subsystem and
‘e the least reliable subsystem, that is, the subsystem with the largest failure rate.

Subsystem 1 in this example is a non-growth subsystem consisting of fixed conﬁguratlon
data of 8,000 hours of test time and 2 observed failures.

Subsystem 2 is a growth subsystem with individual failure time data. In 900 hours of test
time there were 27 observed failures occurring at the following cumulative times: 7.8, 49.5,
49.5,51.0, 64.2,87.3,99.9, 169.5, 189.3, 211.8, 219.0, 233.1, 281.7, 286.5, 294.3, 303.3, 396.0,
426.6, 443.1, 447.0, 501.6, 572.1, 579.0, 596.1, 755.7, 847.5, 858.3.

Subsystem 3 is also a growth subsystem with individual failure time data. In 400 hours
of test time there were 16 observed failures occurring at the following cumulative times: 15.04,
25.26, 47.46, 53.96, 56.42, 99.57, 100.31, 111.99, 125.48, 133.43, 192.66, 249.15, 285.01,
379.43,388.97, 395.25.
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The following table shows the pertinent statistics for each subsystem i. It is here that all
growth (G) subsystem test data are reduced to equivalent demonstration (D) test data.

TABLE 10. SUBSYSTEM STATISTICS

Statistics Subsystem 1 Subsystem 2 Subsystem 3
(i=1,23) (Non-growth) (Growth) (Growth)
T, N/A 900 400
Ng, N/A 27 16
Mci N/A 46.53 31.37
Ng; 2 13.5 8
Np; =—~
' 2
T,, = Mci XNy, 8000 628.19 250.95
~ ~ D,i
My =Mg, =7 4000 46.53 31.37
D,
.1
AN 2.50x 10* 2.149 x 107 3.188x 107

System level statistics are computed by applying the Lindstréom-Madden method to the
equivalent demonstration data from each subsystem.

Th s minT Dii=l23) = 251.0 (68)
3 .
Py = D.p; = 5362x107 (69)
i=) ’ .
. 1 : :
My,, = = = 187 (70)
psys
ND,sys TD,:yx X ﬁsys = 135 (71)
(2)( TD sys )
LCB = ————— = 1432 [(confidence level =80%) (72)
.80

2
ZZND‘,},”Z,.SO

Finally, a table of approximate lower confidence bounds is shown for the system
reliability (MTBF) for a range of confidence levels.
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TABLE 11. SYSTEM APPROXIMATE LOWER CONFIDENCE BOUNDS (LCB’S)

Confidence Level
(in percent) ' LCB for System MTBF
50 17.77
55 17.19
60 _ 16.62
65 16.07
70 15.51
75 14.93
80 14.32
85 13.66
90 12.87
95 11.82
98 10.78
99 10.15
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4. RELIABILITY GROWTH PROJECTION

4.1  Reliability Projection Concepts and Methodology. The reliability growth
process applied to a complex system undergoing development involves surfacing failure
modes, analyzing the modes, and implementing corrective actions (termed fixes) to the
surfaced modes. In such a manner, the system configuration is matured with respect to
reliability. The rate of improvement in reliability is determined by (1) the on-going rate
at which new problem modes are being surfaced, (2) the effectiveness and timeliness of
the fixes, and (3) the set of failure modes that are addressed by fixes.

At the end of a test phase, program management usually desires an assessment of
the system’s reliability associated with the current configuration. Often, the amount of
data generated from testing the current system configuration is severely limited. In such
circumstances, if the failure data generated over a number of system configurations is
consistent with a reliability growth model, we can pool the data over the tested
configurations to estimate the parameters of the growth model. This in turn will yield a
reliability tracking curve that gives estimates of the configuration reliabilities. The
resulting assessment of the system’s current reliability is called a demonstrated estimate
since it is based solely on test data.

If the current configuration is the result of applying a group of fixes to the
previous configuration, there could be a statistical lack of fit in tracking reliability growth
between the previous and current configurations. In such a situation it may not be valid
to use a reliability growth tracking model to pool configuration data to assess the
reliability of the current configuration. We always have the option of estimating the
current configuration reliability based only on failure data generated for this
configuration. However, such an estimate may be poor if little test time has been
accumulated since the group of fixes was implemented. 'In this situation, program
management may wish to use a reliability projection method. Such methods are typically
based on assessments of the effectiveness of corrective actions and failure data generated
from the current and previous configurations.

A second situation in which a reliability projection is often utilized is when a
group of fixes are scheduled for implementation at the end of the current test phase, prior
to commencing a follow-on test phase. Program management often desires a projection
of the reliability that will be achieved by implementing the delayed fixes. This type of
projection can be based solely on the current test phase failure data and engineering
assessments of the effectiveness of the planned fixes. The Crow/AMSAA model in
Section 4.3 or the AMSAA Maturity Projection Model (AMPM) discussed in Section 4.4
can be used to obtain such projections.

The current test phase could consist of several system configurations if not all the
fixes to surfaced problem modes are delayed. In this instance we can still obtain a
projection of the reliability with which the system will enter the follow-on test by using
the AMPM.
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Another situation in which a projection can be useful is in assessing the
plausibility of meeting future reliability milestones, i.e., milestones beyond the
commencement of the follow-on test. The AMPM can provide such projections based on
failure data generated to date and fix effectiveness assessments for all implemented and
planned fixes to surfaced problem modes. '

In Section 4.2 we present several basic concepts used in connection with our
reliability projection models. We also establish notation and present assumptions that are
used throughout this section. Notation and assumptions directed toward a particular
method are introduced in the corresponding section.

In Sections 4.3 and 4.4 we present two reliability projection models and
associated statistical procedures. In Section 4.3 we discuss the Crow/AMSAA model.
This model is used to estimate the system failure intensity at the beginning of a follow-on
test phase based on information from the previous test phase. This information consists
of problem mode first occurrence times, the number of failures associated with each
problem mode, and the total number of failures due to modes that will not be addressed
by fixes. Additionally, the projection uses engineering assessments of the planned
corrective actions to problem modes surfaced during the test phase. The associated
statistical estimation procedure assumes that all the corrective actions are implemented at
the end of the current test phase but prior to commencing the follow-on test phase. This
model addresses the continuous case, i.€., where test duration is measured in a continuous
fashion such as in hours or miles.

In Section 4.4 we present another reliability projection model that addresses the
continuous case. This model is called the AMSAA Maturity Projection Model —
Continuous (AMPM-Continuous). The model can be applied to the situation where one
wishes to utilize test data generated over one or more test phases to project the impact of
fixes to surfaced problem failure modes. The model does not require that the fixes be all
delayed to the end of the current test phase. It only assumes the fixes are implemented
prior to the time at which a projection is desired. Also, projections may be made for
milestones beyond the start of the next test phase. The section contains an example
application of the AMPM.
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4.2  Basic Concepts, Notation and Assumptions. Throughout this section we shall
regard a potential failure mode as consisting of one or more potential failure sites with
associated failure mechanisms. Fixes are often applied to failure modes surfaced through
testing. As in Reference [1], we shall define a B-mode to be a failure mode we would
apply a fix to if the mode were surfaced. All other failure modes will be referred to as A-
modes. A surfaced mode might be regarded as an A-mode if (1) a fix is not economically
justifiable, or (2) the underlying failure mechanisms associated with the mode are not
sufficiently understood to attempt a fix. Thus the rate of failure due to the set of A-
modes is constant as long as the failure modes are not reclassified.

For a surfaced B-mode, the rate of occurrence would hopefully diminish after
implementing a fix to the mode. However, in general, we cannot expect the mode rate of
occurrence to drop to zero. Fixes are seldom perfect; for example, our fix may not
eliminate all the potential failure mechanisms associated with the B-mode. Thus, for
each B-mode, say mode 1, we associate a fix effectiveness factor (FEF), denoted by d,.
The FEF d, is the fraction by which the initial rate of occurrence of mode i is reduced
due to the fix. The assessed values for the d; of surfaced B-modes are often based

largely on engineering judgement. This is why the corresponding reliability assessment
is termed a “projection” as opposed to a “demonstrated value” that is based solely on the
test data.

List of Notation:

K Number of potential B-modes that reside in the system
A Initial rate of occurrence of B-modei (i =1,---,K)

A,  Contribution of A-modes to system failure intensity
A, B-mode contribution to initial system failure intensity

Total duration of conducted test. Typically measured in hours or miles.
Number of A-mode failures that occur over [0,T]

Number of B-mode failures that occur over [0,T]

Number of distinct B-modes surfaced over [0,T]
M(t) Random variable of number of distinct B-modes surfaced by test duration

t
u{t) The expected value of M(t)

t; Time of first occurrence of B-mode i (i =1,--, K)

t Vector of B-mode first occurrence times ( )

N, Number of failures associated with B-mode i that occurs during test

d, Fix effectiveness factor (FEF) for B-mode i. The factor d, is the fraction
of A, removed by the fix.

obs  The index set associated with the m B-modes that are surfaced during test
E Expectation operator
\Y Variance operator
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mie  Maximum likelihood estimator

When placed over a parameter, it denotes an estimate
“Distributed as” '

“Approximated by”

“Approximately equal to”

! >

n

Assumptions:

1. At the start of test, there is a large unknown constant number, denoted by K,
of potential B-modes that reside in the system (which could be a complex
subsystem).

2. Failure modes (both types A and B) occur independently.
3. Each occurrence of a failure mode results in a system failure.
4. No new modes are introduced by attempted fixes.

Additional notation and assumptions germane to a particular model will be
introduced in the section dealing with the model.

4.3 Crow/AMSAA Reliability Projection Model.

4.3.1 Introduction. In this section we shall consider the case where all fixes to
surfaced B-modes are implemented at the end of the current test phase prior to
commencing a follow-on test phase. Thus all fixes are delayed fixes. The current test
phase will be referred to as Phase I and the follow-on test phase as Phase I1.

The Crow/AMSAA reliability projection model and associated parameter
estimation procedure was developed to assess the reliability impact of a group of delayed
fixes. In particular, the model and estimation procedure allow assessment of what the
system failure intensity will be at the start of Phase II after implementation of the delayed
fixes. Denoting this failure intensity by r(T), where T denotes the duration of Test Phase
I, the Crow/AMSAA assessment of r(T) is based on: (1) the A and B mode failure data
generated during Phase I test duration T; and (2) assessments of the fix effectiveness
factors (FEFs) for the B-modes surfaced during Phase I. Since the assessments of the
FEFs are often largely based on engineering judgement, the resulting assessment, f(T ) ,
of the system failure intensity after fix implementations is called a reliability projection
as opposed to a demonstrated assessment (which would be based solely on test data).

The Crow/AMSAA projection model and estimation procedure was motivated by
the desire to replace the widely used “adjustment procedure.” The adjustment procedure

assesses 1(T) based on reducing the number of failures N, due to B-mode i during Phase

‘Ito Ll -d; )N .» Where d; is the assessment of d,. Note (1 -d; )N ; 1s an assessment of
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the expected number of failures due to B-mode i that would occur in a follow-on test of
the same duration as Phase I. The adjustment procedure assesses r(T) by 7., (1) where

| Z(l—d; JN‘.
dj(T) - NA+ieobs

T T M

rﬂ

Crow([1] shows that even if the assessed FEFs are equal to the actual d,, the
adjustment procedure systematically underestimates r(T). This bias, i.e.,

Br) = EpD)-2,@) > 0 @

is calculated in [1] by considering the random set of B-modes surfaced during Phase I. In
particular, the adjustment procedure is shown to be biased since it fails to take into
account that, in general, not all the B-modes will be surfaced by the end of Phase I.
Before discussing how the Crow/AMSAA methodology addresses this bias we shall list
some additional notation and assumptions associated with the Crow/AMSAA model.

4.3.2 Crow/AMSAA Model Notation and Additional Assumptions.

List of Notation:
D; The conditional random variable for B-mode 1 (1= 1, ..., K) whose
realization is the fix effectiveness factor d; if mode i occurs during Test
Phase L.

Ha Expected value of D;
T Length of Test Phase I
r(T) System failure intensity at beginning of Test Phase II after implementation
of delayed B-mode fixes. Viewed as a random variable whose value is
determined by the set of B-modes surfaced during Test Phase I and the
associated fix effectiveness factors.
oT) Expected value of r(T) with respect to random set of B-modes surfaced in
Test Phase I, conditioned on the fix effectiveness factor values. We write

AAT)=E((T))

7.4(T)  Adjustment procedure assessment of the value taken on by r(T)

B(T) Bias incurred by assessing the value of i(T) by 7, (T). Thus,
B(T)=EY(T)~ 7,4 (T)}

Pop Growth potential system failure intensity

M Growth potential system MTBF, i.e., M, =(0z )"
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h(t) Expected rate of occurrence of new B-modes at test duration t. Note:

_du)
h(t) = -
h (), r.(), p.@t) Crow/AMSAA model approximations to A(t), r(t), p(z)
' respectively
M(T), M(T) Denote (o(T))™" and (o, (T))™" respectively

Additional Assumptions for Crow/AMSAA:
1. The time to first occurrence is exponentially distributed for each failure mode.

2. No fixes to B-modes are implemented during Test Phase I. Fixes to all B-
modes surfaced during Phase I are implemented prior to Phase II.

3. The fix effectiveness factors (FEFs) d, associated with the B-modes surfaced

during Phase I are realized values of the random variables Di(i=1, ..., K)
where:
(a) The D, are independent;

(b) The D, have common mean value 4, ; and
(c) The D, are independent of M(T).

4. The random process for the number of distinct B-modes that occur over test
interval [O,t], i.e. M(t), is well approximated by a non-homogeneous Poisson

process with mean value function u_(t)=At” for some 1, #> 0.

4.3.3 Crow/AMSAA Model Equations and Estimation Procedure. The
Crow/AMSAA model assesses the value of the system failure intensity, 1(T), after
implementation of the Phase I delayed fixes. This assessment is taken to be an estimate

of the expected value of r(T), i.e., an estimate of o(T )=E (r(T )) In (1] (and in Section
4.4.3) it is shown that:

AT) = ,1A+f:(1-d,.),z,.+id,.,z,.e"f’ - 3)

i=] i=]

The traditional adjustment procedure assessment for the value of r(T) is actually an
estimate of

K
1,4 +Z(1_di)/1i
i i=1

since as shown later in this subsection
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G, () = 4,+30-d)4, @

where d is an assessment of d;. Thus, by (3) and (4), the adjustment procedure has the
bias B(T) where

B(I) = E(I)-7,()

= o(7)- El7,4 (7))

K K
= Y@ -a )4+ d, 4T

i=1 i=1

It follows that for d; =d, (i=1,---,K)

B(T) = id,. AetT (5)

This shows that even with perfect knowledge of the d, (i.e., when d; =d,), the

adjustment procedure provides a biased underestimate of the value of r(T). The
Crow/AMSAA procedure attempts to reduce this bias by estimating B(T) given by (5).

To estimate B(T), the Crow/AMSAA Model uses an approximation to B(T). This
approximation is obtained in two steps. The first step is to regard the d, in (5) as

realizations of random variables D, (i=1,--,K) that satisfy assumption number 3 in the

“Additional Assumptions for Crow/AMSAA.” Then B(T) is approximated by the
expected value (with respect to the D, ) of

K .
Z D, A e "7
i=1
Thus the initial approximation arrived at for B(T) in (5) is

K
B(T) = E(Z D, A e T)
i=1

K
= Hy Z’Z’i e’ (6)
p
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where 4, = E(D,) (i=1,---,K). The final step to obtain the Crow/AMSAA
approximation of B(T) is to replace the sum

K
Z A e T

i=l

in (6) by a two parameter function of T. The Crow/AMSAA Model replaces this sum by
the power function

h(T) = ABT* for 4,850 (7
The form in (7) is chosen based on the desire fora mathematically tractable estimation

problem and an empirical observation. Based on an empirical study, Crow [1] states that
the number of distinct B-modes surfaced over a test period [0, t] can often be

approximated by a power function of the form
ult) = ¢’ for 4,450 (8)

In (8), Crow [1] interprets s, (t) as the expected number of distinct B-modes surfaced
during the test interval [O,t]. More specifically, [1] assumes the number of distinct B-
modes occurring over [O, t] is governed by a non-homogeneous Poisson process with
4. (¢) as the mean value function. Thus

h () = d—f;t(-’—) = Ap* ©

represents the expected rate at which new B-modes are occurring at test time t.

In Annex 1 of Appendix D, under the previously stated assumptions, it is shown
that the expected number of distinct B-modes surfaced over [O,t] is given by

M) = Pl-er) (10)

i=1

Thus the expected rate of occurrence of new B-modes at test time t is
X
W) = %@ = Y Aet (11)
i=l

Equation (11) shows that the initial approximation to the bias B(T), given in (6) can be
expressed as
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B(T) ~ u,h() (12)

By replacing h(T) in (12) by A, (T ) given in (9), we arrive at the final Crow/AMSAA
Model approximation to B(T), namely

BC(T) = /udhc(T)
=, ApT" (13)

Returning to our expression in (3) for the expected value of the system failure
intensity after incorporation of the Phase I delayed fixes, i.e., o(T)=E (r(T)), we can

now write down the Crow/AMSAA Model approximation for o(T). This
approximation, by (13), is given by:

p(1) = 2,+3(-d)4+B,(T)

= 4 0-d)A (2 8T) (14)

We shall next consider the Crow/AMSAA procedure for estimating o, (7). This

estimate is taken as the assessment of the system failure intensity after incorporation of
the delayed fixes.

Consider the first term in the expression for p, (T) givenin (14),i.e.,, 1,. Since
the A-modes are not fixed, the A-mode failure rate 4, is constant over [0,T]. Thus we
simply estimate 4, by

i, = — (15)

£(3,) = BWd _ AT _ (16)

Next consider estimation of the summation

i(l —di)/zi
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in the expression for p, (T ) By the second assumption in the “Additional Assumptions

for Crow/AMSAA,” all fixes are delayed until Test Phase I has been completed. This
implies the failure rate for B-mode i (i =1, K ) remains constant over [0,T]. Thus we

simply estimate A, by
i = = (i=1-,K) (17)

where N, denotes the number of failures during [0,T] attributable to B-mode i. Note

Equations (16) and (18) suggest we assess

/zA +ZK:(1—di)/li

by

N, & (N
- _T_+Z(1 d‘.)(Tj (19)

Observe N =0 if B-mode i does not occur during [0,T]. Thus

) = 2o y-ar) 2] @0)

ieobs

where obs = {i | B-mode i occurs during [0,T]}. Note the adjustment procedure estimate
has the form

@21)

. N’
radj(T) = _]-..—

where

N = N+ 3 (-d7)w, 22)
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is the “adjusted”” number of failures.
For given fix effectiveness factor (FEF) assessments, d,' , hote that

B, (1) - T {Em)é(l &;)B(NV )}

i=1

- rar e S-a)an)

= A+ i(l —d} )4, 23)

Thus, as stated earlier, we see that the adjustment procedure estimate only provides an
assessment for a portion of the expected system failure intensity, namely

) K
/?’A + Z(l - di)/li
i=1

Returning to the fundamental equation for the Crow/AMSAA Model
approximation to the expected system failure intensity, i.e. (14),

K
p(T) = A,+Y(-d)4 +p, (2877
i=1

Let us next consider the assessment of the fix effectiveness factors d;. The assessment

d will often be based largely on engineering judgement. The value chosen for d should .

reflect several considerations:

(1) How certain we are that the root cause for B-mode i has been correctly identified; (2)
the nature of the fix, e.g., its complexity; (3) past FEF experience; and (4) any germane
testing (including assembly level testing).

Note that (20) shows that we need only assess FEFs for those B-modes that occur
during [0,T] to make an assessment of

/l,,+i(l—

To assess the mean FEF, u, = E(D,), we utilize our assessments d for i € obs .
Let m be the number of distinct B-modes surfaced over [0,T]. Then we assess x, by
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» 1 *
= —Y4d 24
ﬂd m Z i ( )

ieobs

To cdmplete our assessment of the expected system failure intensity after
incorporation of delayed fixes, we shall now address the assessment of

h(T) = ApBT*

To develop a statistical estimation procedure for A and B, the Crow/AMSAA Model
regards the number of distinct B-modes occurring in an interval [0,t], denoted by M (t) ,

as a random process. The model assumes that this random process can be well
approximated, for large K, by a non-homogeneous Poisson process with mean value
function

u ) = EM@) = ¢’
where A, B, t > 0. As noted earlier in (9)

d p,(t)
) - 2

The data required to estimate A and J are (1) the number of distinct B-modes, m,
that occur during [0,T] and (2) the B-mode first occurrence times
O<t <t,<---<t, <T. Crow [1] states that the maximum likelihood estimates of A and

B, denoted by A and / respectively, satisfy the following equations:

AT? = m (25)
5 o= 2 __ (26)

2]

Note (25) merely says that the estimated number of distinct B-modes that occur during
[0,T] should equal the observed number of distinct B-modes over this period. Solving

(25) for A we can write our estimate for /_(T) in terms of m and / as follows:
A - Gdparsr - | e
h(T) = ABT7' = (T/.]),BT

mp |
7 @7)
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Crow [1] notes that conditioned on the observed number of distinct B-modes m ,
i.e. M(T) = m, the estimator

B, = (’"—'1)3 m>2 (28)
m
is an unbiased estimator of j, i.e.,
E(B,) = 8 . 29)

Thus we shall also consider estimating 4, (T ) = A 4T by using ,?m . This leads to
the estimate

A1) = o ‘ (30)

Finally, to complete our assessment of the system failure intensity, we need to
assess the Crow/AMSAA Model expected system failure intensity p, (T). Recall, by

(14)

p(T) = A,+3(-d) 4 +p b (1) 31)

Piecing together our assessments for the individual terms in (31) we arrive at the

following assessment for p, (T) based on f3:

plr) - XeeShea) %)L 5 ) 22]

i=| icobs

- —;—{N 2(1 &N, +,62d}

i= . ieobs

Since N, =0 for i ¢ obs, we finally obtain

ieobs ) ieobs

p.(T) = {N+Z( )N,-+2'2d.-‘} (32)

Likewise, we arrive at the following alternate assessment for p, (T') based on 2,
(provided m>2):
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p.(T) = —;—{NA+Z(1-d,-‘)N,-+ﬁmZd:} (33)

icobs ieobs

Note both estimates of p,(T’) are of the form

Estimate p,(T) = —;—{N "+ (estimate ﬂ)Zdl} (34)

icobs

where N’ is the “adjusted” number of failures over [0,T]. Recall the historically used
adjustment procedure assessment for the system failure intensity, after incorporation of
delayed fixes, is given by

. N

adj (T) = _T—
Also recall

- m—=1)\ - A

7, = (——j/f Ny

m
Thus we see by (32) and (33)
;ar#(T) < ﬁc(T) < bc(T) (35)

Also of interest is an assessment of the reciprocal of p,(T), i.e.

M(T) = {p.(T)}"

The assessment for the system mean time betiveen failures after incorporation of the

delayed fixes, denoted by M(T), is taken to be the Crow/AMSAA Model assessment of
M_(T). The assessments of Mc(T) based on p_(T ) and 5,(T) are denoted by M. (T)

and ﬁc(T) respectively. Thus

M (1) = {20} (36)
and

M(T) = {B.(D)}" (37)
By (35) we have
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M(T) < M) < &, (38)

In Section 4.3.5 we shall argue that p, (T ) generally provides a more accurate
assessment of p,(T') than does p,(T'). However, somewhat surprisingly at first thought,
in Section 4.3.5 we identify conditions under which M_(T) generally provides a more
accurate assessment of M, (T) than does M, (T).

4.3.4 Reliability Growth Potential. Consider the expression in (3) for p(T ) , the
expected system failure intensity after incorporation of the delayed fixes. If we let
T — o and denote the resulting limit of o(T) by p,, we obtain

o = lmplT) = 4,+3(-d)4 (39)

Tow "
i=i

The expression p,, is called the growth potential failure intensity. Its reciprocal is

referred to as the growth potential MTBF. The growth potential MTBF represents a
theoretical upper limit on the system MTBF. This limit corresponds to the MTBF that
would result if all B-modes were surfaced and corrected with specified fix effectiveness

factors. Note p,, is estimated by

Pop = %(NA +Z(1—d,.')N,.J 40)

ieobs

If the reciprocal (p,, )" lies below the goal MTBF then this may indicate that achieving
the goal is high risk.

4.3.5 Use of the Maximum Likelihood Estimator versus the Unbiased Estimator
for 4. Recall that the estimator

conditioned on M(T)=m, with m>2, is unbiased for 7, i.e.
EB,) = 5

Furthermore the variances of /4, and ﬂ , denoted by V' (;6_’,,,) and V (ﬂ) respectively,
satisfy the following:
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m

)< A

= (ﬁ’—n‘—ly vip) < vip) @

for m>2. Equation (41) together with the unbiased property of Z’m , suggest that Z’m

provides a more accurate assessment of £ than does 4.

Next consider the assessments of 4, (T’) based on /3 and £, . Recall the

Crow/AMSAA Model assumes that M(t), t>0, is a non-homogeneous Poisson process
with mean value function ‘

u(t) = EM@E) = At A, >0
Thus, in particular, M(T) is Poisson distributed with mean
EM(T)) = AT’

Using this fact, it can be shown that &_(T) is an approximately unbiased estimator of
h_(T) under most conditions of practical interest, where it is understood that h (T)

denotes a conditional estimator, conditioned on M(T)>2. To be more explicit, &_(T),

when viewed as an estimator (as opposed to an estimated value), is a random variable
which is a function of M(T) and the random vector of B-mode first occurrence times

(Tl,---,TM(T)). When M(T)=m and (T,,~~,TM(T))=(t,,---,tm),the estimator A, (T) takes
m B,
T

on the value

where

R

The estimator 4_(T) can be shown to satisfy the following:

Er(T) = h(T) (42)
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provided Pr(M(T)=0) = 0, where Pr denotes the probability function for M(T).

Consider the variances of the estimators #_(T’) and i;C (T) conditioned on
M(T)=m. For m22,

() M(@)=m) = V('"fm]

~| 3
\_/

oL
1
|

%2(1"—,;—12 - (5
< (2) ) - V[zgzj
= vl ()| MT)=m) 43)

Now consider the variances of &_(T') and &, (T) conditioned on M(T)>2. Since (43)
holds for each m >2, we have

V0 M@)22) < V(i @)M(T)22) (#4)

Equations (42) and (44) suggest that the estimator h (T ) provides a more accurate

estimate of A, (T') than does the estimator };C (T) when two or more distinct B-modes
occur during [0,T].

We now investigate the bias of the estimators /. (T) and 5,(T). To do so, let

p(T) = — N,,+Z(1—d,.')N,.+ﬁZd‘.‘}

icobs ieobs

. By (27) and (30) we have

3 —_
\]"w L

where Z’ e {ﬁ, ,Zm } Also let lz (T ) =
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R

N, & . N .~
= TA+§(1"d,~)']T+#dhc(T)
Thus the expected value of 5(T) is

EGI) = A+ Xa-diaselih@) @)

Recall by (31),

i=1

pc(T) = 4, +ZK:(l_di)’li + 4y hc(T)

Thus by Equation (45), we have

E(p.(T)-p.(T) =

N(d, —d)) 4, + E {4 - ) he (D} + w1 {Ehe(T)) - b, (T))} (46)

i=]

By (46) we see that even if our assessments of pg and the d; are perfect, the estimator

2.(T) will have a residual bias of

s (ERT)-1.T)
To reduce this residual bias as much as possible, we wish té maké the bias
E{f (1)~ 1.(7)

as small as possible. Since #_(T) is almost an unbiased estimator for 4_(T), this
suggests we use

2.(T) = {N + S (1-d; )N, + B, Zd;}

icobs icobs

to assess p, (T )

104



Next , we discuss the assessment of M (T) = {p.(T ). Todo so let
I\~/IC(T) = {ﬁc(T . Thus |

w0 « [t gim 7]

ieobs icobs

- P’fu Sl-d; )—1;-{-;; Zd;)ﬁc(T)J—l @7

ieobs icobs

Also

i=l

M) = [ 0-a)ieantn) @

We have shown that to minimize the bias

E{p, (I)}- . (T)

we should use 7.(T) instead of 5,(T) to estimate p,(T). However, we wish to
demonstrate that one should not infer from this that M_(T’) must have a smaller bias than

M_(T) as an estimator of M_(T'). To demonstrate this we shall consider a simple case,

~ -1
the instance when the bias of M_(T') is approximately equal to the bias of {H.,(T)} .
Thus in the following assume

E[M, (T)[M(T)22] - M, (T)
sE[{E Mf' M) ZAZJ -, (D) (49)

One instance where (49) would be expected to hold is when Ap =0 andd; =1 fori=1,
..., K. For such conditions, we have by (48) that M(T) = {h. (T)}"'. Also, insucha

case, it is reasonable that d; =1fori € obs and, with high probability, —It—Iri =0. By (47)

we see that such conditions would imply
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E M, (T)|M(T)22]

= E [{H (T)}-1|M(T)22} |

The above expectations and all subsequent expectations in this section are with respect to
all the random quantities for given d;, conditioned on M(T) > 2. These random

quantities are the number of A-mode failures and the number of distinct B-modes
experienced over [0, T], and the random vector of B-mode first occurrence times

(Ti, -, Taem)-

Now consider the expected values of {h (T)}' and {-ﬁc (T)}‘l conditioned on

M(T) > 2. From the fact that the number of distinct B-modes occurring over [0,T] is
Poisson with mean ATP it can be shown

h (7)) < By M) 2 2
< Bl My M(T)2 2] (50)

for w(T) > 3.2. Thus, when (49) holds, Equation (50) implies
E M, (T)|M(T)22)-M, (T)
= E [{Hc Df |M(T)22] - {h (D)}
> E [{h M MD 2 2] - (h,(T)}"
= E [, (MMT) 22| -M (T) (51)

and
E M, () |M(T)>2|- M, (T)

= E [{h @}’ |M(T)22] ST >0 (52)
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Equations (51) and (52) show that for the case considered we should anticipate
that M_(7') and M, (T') will have positive biases with the bias of M,(T) larger than that

of M,(T). It has not been established whether this holds more generally . If there is
concern that M_(T') will have a positive bias and that the bias of M, (T') will exceed that
of MC(T ), then one may wish to assess M, (T ) by the more conservative estimator

M. (T) (recall M_(T) < M,(T) for M(T) > 2).

4.3.6 Example. The following example is taken from [1] and illustrates application of
the Crow/AMSAA model.

Data were generated by a computer simulation with 4, =0.02, 4, =0.1,
K =100 and the d,’s distributed according to a beta distribution with mean 0.7. The
simulation portrayed a system tested for T =400 hours. The simulation generated
N =42 failures with N, =10 and N, =32. The thirty-two B-mode failures were due

to M=16 distinct B-modes. The B-modes are labeled by the index 1 where the first
occurrence time for mode iis ¢, and 0<¢, <t, <---<t,, <T =400.

Table 1 lists, for each B-mode i, the time of first occurrence followed by the times
of subsequent occurrences (if any). Column 3 of the table lists N,, the total number of

occurrences of B-mode i during the test period. Column 4 contains the assessed fix
effectiveness factors for each of the observed B-modes. Column $ has the assessed
expected number of type i B-modes that would occur in T=400 hours after
implementation of the fix. Finally, the last column contains the base e logarithms of the

B-mode first occurrence times. These are used to calculate ,3 .
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Table 1. Projection Example Data.

B-mode Failure Times (hrs) N, | od | -d ), Int,
1 15.04, 254.99 2 67 .66 2.7107
2 [25.26,120.89, 366.27 3 72 84 3.2292
3 |47.46,3502 2 77 46 3.8599
4 |53.96,315.42 2 77 46 3.9882
5 56.42,72.09,339.97 3 87 39 4.0328
6 |99.57,274.71 2 92 16 4.6009
7 10031 1 .50 .50 4.6083
8 111.99, 263.47, 373.03 3 85 45 4.7184
9 125.48, 164.66, 303.98 3 89 33 4.8321
10 |133.43,177.38, 324.95, 364.63 4 74 1.04 4.8936
11 [192.66 1 70 30 5.2609

12 [249.15,324.47 2 .63 74 5.5181
13 ] 28501 1 .64 36 5.6525
14 [379.43 L 72 28 5.9387
15 | 388.97 1 .69 31 5.9635
16 [395.25 1 46 54 5.9795

Totals 32 | 11.54 7.82 75.7873

From Equation (1) and Table 1, the adjustment procedure estimate of r(T) =

r(400) is
(——1 )[N + 126 (l—d.‘)N.j
400 4 i=1 ‘ l

_ 10+782 04455

400

7. (400)

- Thus the adjustment procedure estimate of the system MTBF is

- 400
F (400)' = —— = 2245

Looking at Equation (40), we can see that the adjustment procedure estimate of system
failure intensity after implementation of the fixes is simply 2, , the estimated growth

potential failure intensity. Thus
Por = F,;(400) = 0.04455

Also, the estimate of the system growth potential MTBF is

b = (a0} = 2as
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To obtain an estimate with less bias of the system’s failure intensity and
corresponding MTBF at T=400 hours, after incorporation of fixes to the sixteen surfaced
B-modes, we use the Crow/AMSAA model estimation equation (32). This projection is
given by

2.(400) - p(i] Sa:

400 ieobs

= 0.04455+| — [{11.54 53
( 205 |1154) (53)
The mle ,5’ is obtained from Equation (26), i.e.,
. m | m

ﬂ m T m
il InT - ) In¢,
zlln(t ] minT Z n¢,

i=1

= 16 = 0.7970

161n400 - 75.7873

Thus, by (53), the Crow/AMSAA projection for the system failure intensity, based on ,5’,
1s

. 0.7970
400 0.04455 11.54
.(400) (2220 .50

0.06754

The corresponding MTBF projection is
{p.(400)}" = 14381

A nearly unbiased assessment of the system failure intensity, for d; =d,, can be

obtained by using /, instead of 2. Recall by (28),

B. = (’"'ljﬁ = (%)(0.7970) = 0.7472

m
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By Equation (33), the projected system failure intensity based on £, is

. g, .
Pep * Tigsdi

2. (400)

0.04455 + [0'7472) (11.54)
-\ 400

0.06611

The corresponding MTBF projection is

{p.(400)}" = 1513

As discussed in Section 4.3.5, we recommend basing the projected system failure
intensity on p, (T ) which uses Bm , but assess the projected system MTBF by using ,& .

Thus in this example we would recommend assessing the projected system failure
intensity by

7.(400) = 0.06611

and the projected system MTBF by

{p.(400))" = 1481
44  The AMSAA Maturity Projection Model (AMPM) — Continuous.

4.4.1 Introduction. The continuous version of the AMPM assumes the test
duration is measured in a continuous scale such as time or miles. Throughout this section
AMPM will refer to the continuous version of the model and we shall refer to time as the
measure of test duration.

The AMPM addresses making reliability projections in several situations of
interest. One case corresponds to that addressed by the Crow/AMSAA projection model
introduced in [1] and discussed in Section 4.3. This is the situation in which all fixes to
B-modes are implemented at the end of the current test phase, Phase I, prior to
commencing a follow-on test phase, Phase II. The projection problem is to assess the
expected system failure intensity at the start of Phase II. Another situation handled by the
AMPM estimation procedure is the case where the reliability of the unit under test has
been maturing over Test Phase I due to implemented fixes during Phase I. This case
includes the situations where
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(i) all surfaced B-modes in Test Phase I have fixes implemented within this test
phase or

(ii) some of the surfaced B-modes are addressed by fixes within Test Phase I and the
remainder are treated as delayed fixes, i.e., are fixed at the conclusion of Test Phase I,
prior to commencing Test Phase II.

A third type of projection of interest involves projecting the system failure
intensity at a future program milestone. This future milestone may occur beyond the
commencement of the follow-on test phase.

All the above type of projections are based on the Phase I B-mode first occurrence
times, whether the associated B-mode fix is implemented within the current test phase or
delayed (but implemented prior to the projection time). In addition to the B-mode first
occurrence times, the projections are based on an average fix effectiveness factor (FEF).
This average is with respect to all the potential B-modes, whether surfaced or not.
However, as in the Crow/AMSAA model, this average FEF is assessed based on the .
surfaced B-modes. For the AMPM model, the set of surfaced B-modes would typically
be a mixture of B-modes addressed with fixes during the current test phase as well as
those addressed beyond the current test phase.

In some instances, a reliability projection for a future milestone can be based on
extrapolating a reliability growth tracking curve. Such a curve only utilizes cumulative
failure times and does not use B-mode fix effectiveness factors. This is a valid projection
approach provided it is reasonable to expect that the observed pattern of reliability
growth will continue up through the milestone of interest. However, this pattern could
change in a pronounced manner. Reasons for such a change include

(i) a change in the test environment;

(i1) a different level of future resources to analyze and implement effective
corrective actions; and

(i1i) jumps in reliability due to delayed fixes.

If extrapolating the current tracking curve is not deemed suitable due to considerations
such as above, the AMPM projection methodology may be useful. Unlike assessments
based on the tracking model, the AMPM assessments are independent of the fix
discipline, as long as the fixes are implemented prior to the projection milestone date of
interest. Unlike the reliability growth tracking model in [2], the AMPM (as well as the
Crow/AMSAA projection model) utilizes a non-homogeneous Poisson process with
regard to the number of distinct B-modes that occur by test duration t. The associated
pattern of B-mode first occurrence times is not dependent on the corrective action
strategy, under the assumption that corrective actions are not inducing new B-modes to
occur. Thus the AMPM assessment procedure is not upset by jumps in reliability due to
delayed groups of fixes. In contrast, reliability growth tracking curve methodology
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utilizes the pattern of cumulative failure times. Such a pattern is sensitive to the
corrective action strategy. Thus a reliability growth tracking curve model may not be
appropriate for fitting failure data or for extrapolating due to a corrective action strategy
that is not compatible with the model.

Note that AMPM reliability projections for a future milestone would be optimistic
if corrective actions beyond the current test phase were less effective than the average
FEF assessment based on B-modes surfaced through the current test phase. Also, a
change in the future testing environment could result in a new set of potential failure
modes or affect the rates of occurrence of the original set of failure modes. Either of
these circumstances would tend to degrade the accuracy of the AMPM reliability
projection.

Another instance in which a reliability projection model would be useful is when
the current test phase contains a number of design configurations of the units under test
due to incorporation of reliability fixes during the test phase. If there is a lack of fit of the
reliability growth tracking model over these configurations then the tracking model
should not be used to assess the reliability of the latest configuration or for extrapolation
to a future milestone. Such a lack of fit may be due to the corrective action process, i.e.,
when the fixes are implemented and their effectivity. As pointed out earlier, the AMPM,
unlike a tracking model, is insensitive to any nonsmoothness in the expected number of
failures versus test time that results from the timing or effectivity of corrective actions.
Thus in such a situation, program management may wish to use a projection method such
as the AMPM to assess the reliability of the current configuration or to project the
expected reliability at a future milestone.

As discussed in [3], the AMPM can also be used to construct a useful reliability
maturity metric. This metric is the fraction of the expected initial system B-mode failure
intensity, 4, , surfaced by test duration t. By this we mean the expected fraction of A,

due to B-modes surfaced by t. This concept will be expanded upon in a later subsection.

Prior to presenting the model equations and estimation procedures, we shall list
the associated notation and assumptions.

4.4.2 AMPM Notation and Assumptions.

Notation:
X
Ky Arithmetic average of the d,, 1.e,, (%{.)Z d,
i=1
a, p Parameters for gamma density function, where @ > -1 and £ >0
(subscripted by K or co where required for clarity).
o Denotes the integral _[ x% e "dx for a>-1.
0
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A Gamma random variable.

¥ Moment generating function for A.
(e, #) Denotes gamma random variable with parameters o > -1, £>0.
fa Denotes density function for A ~T'(a, /), where
A |
£
= Le for 1>0;
a!ﬂa«H
= 0 elsewhere

>

I
£
>
=

I
!
~
o

~
g’

he)

r(e; 2)

ole; 2)

Random sample of size K from (e, g).

Realization of A.

K
Expected value of Z A,
i=1

Expected number of distinct B-modes conditioned
onA=4.

Expected rate of occurrence of B-modes given
A=4.

Unconditional expected B-mode rate of occurrence.
System failure intensity after fixes to B-modes
surfaced by t have been implemented, conditioned

on A=4.

Expected value of r(t ; 4) with respect to random
first occurrence times of B-modes.

Expectation of p{t; A) with respect to A

Equals 1 if B-mode i occurs by t, equals 0
otherwise.
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Vi

obs

KIBM ’

(1>

Failure intensity at time t due to unsurfaced B-
modes, conditioned on A = 4.

Unconditional expected failure intensity due to set
of B-modes surfaced by t, in absence of any fixes.

Expected fraction of 4, , surfaced as a function
of t.

Time of first occurrence of B-mode 1.

Likelihood function for the test data (m,¢) given
A=4.

Expectation of L(m,t,A).
Natural logarithm (base “e”).
In{L(m, 1)}

(e 4. K)

i

Set of indices associated with m observed B-
modes. :

Greatest lower bound for set of K-values for which
AMPM mle’s are well defined.

IBM model mle of K.

Defined to be.

Additional Assumptions for AMPM — Continuous

e The time to first occurrence is exponentially distributed for each failure mode.
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e Fori=12,---,K, the effectiveness of a fix associated with B-mode 1 is
independent of the mode’s initial rate of occurrence /.

e The B-mode initial rates of occurrence (4,,++, 4, ) constitute the realization of a
random sample (A,,---,A . ) from a gamma distribution with density f, A- This

models mode-to-mode vanation in the B-mode initial failure rates. That is, we
assume the A, (i =1,--,K) are independent and identically distributed (IID)

random variables, where A, ~I'(e, £).

4.4.3 AMPM Development. The AMPM provides a procedure for assessing the
system failure intensity (¢ ;4). Recall r(t; 4) denotes the system failure intensity after
fixes to all B-modes surfaced by test time t have been implemented.

Note A=(4,, -+, 4, ) denotes the initial B-mode rates of occurrence. In
particular, consider B-mode i. If this mode does not occur by t then its rate of occurrence
at tis still 4,. However, if B-mode i occurs by t then, by our definition of r{¢; 1), the

contribution of this mode to #{t; 4) is only (1-d,) A, due to the implemented fix (or
fixes) to mode i by t. We may conveniently mathematically express the contribution of
B-mode i to r(t;4) by

Thus

K
r(t,4) = ,1,,+21-d1 A,
i=1

K
A+ d AL(t) 2)
i=l i=1
As in the Crow/AMSAA model, the AMPM assesses the system failure intensity r(t ; 51_)

by an assessment of the expected value of r(z; 1), i.e. pt; 2)= E(r(t; 4)). Note by (2)
we have

E(r(5; 2)

ot 2)

I

Ao+ 34, - Y d 4B () ©

In Appendix D, Annex 1 we show,
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Elr()] = 1-e* @)

where the expectation is with respect to the time of first occurrence of B-mode i.
This yields

K K
,O(t;/_i) = A, Z (1 -d, )’li + 2 d,Ae ™ (5)
' i=1 i=l

In Section 4.3 (where the argument 4 was suppressed) it was noted that the
Crow/AMSAA model approximates p(t;/_i) by

p(t4) = 2A+i(1-d,~)ﬂ,~+ﬂd h.(t;4) (6)

i=]
with
h(t;4) = ww™ )

for positive constants u, v. This form for the expected rate of occurrence of new B-
modes corresponds to approximating the expected number of distinct B-modes occurring
over [0, t] by

u(2) = u’ (8)

Recall the Crow/AMSAA procedure estimates the constants u, v by the mle statistics
based on the B-mode first occurrence times observed during Test Phase I, i.e., [0, T].
The summation term in (6) is assessed as

AN,
> (-d;) = ©)

icobs

where d; is the assessed fix effectiveness factor for observed B-mode i, and N, is the

number of occurrences of failures during [0,T] attributed to B-mode i. Note in the
Crow/AMSAA procedure all fixes are assumed to be delayed to the end of the period

[0,T]. Under this assumption —;FL is an unbiased estimate of 1,. However, if fixes to B-
modes are implemented prior to the end of this period (9) may not be an adequate

K
~ assessment of Z (1-4d,)4 .

i=l .

The AMPM does not attempt to assess p(t; 4) by estimating each 4,. Instead the
AMPM approach is to view (4,, -, 4, ) as a realization of a random sample
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A = (A,,--,A,) from the gamma random variable (e, £). This allows one to
utilize all the B-mode times to first occurrence observed during Test Phase I to estimate
the gamma parameters @, #. Thus in place of directly assessing p(t; 1), the AMPM

uses estimates of @ and £ to assess the expected value of p(t; Q) where
K ) K
pEA) = A+ (1-d)A, +D dAe™ (10)

{=1

i i=1

This assessed value is then taken as the AMPM assessment of the system failure intensity
after fixes to all B-modes surfaced over [0,t] have been implemented. This approach
does away with the need to estimate individual 4,. Trying to adequately estimate

individual A, could be particularly difficult in the case where many fixes are
implemented prior to the end of the period [0,T].

From Equation (10) we see that the expected value of pft; A) with respect to the
random sample A, denoted by p(t), is given by

K K
A = 4+ 2 0-d)EN)+Dd Eae™) - ap
i=] i=1
Recall the A, are IID with A, ~ A. Thus E(A,)=E(A) and E{A,e™ )= E(Ae™) for
K
i=1,---,K . After rearranging terms and replacing Zd,. by K g, E(A,) by E(A), and

i=l

E(A,e™ ) by E(Ae™ ) we arrive at

plt) = A +-u)KEQ}+mik Eae™)  (12)
Next note
Adpe = E(ZK:AJ = KE(A) (13)

Thus we can express p(t) by
p(t) = A+ (1 - lud)/?'B.K 4y, {K E(Ae-m )} (14)

To interpret the term K E (Ae"“) in (14) we first note that in Appendix D,
Annex 1, it is shown that
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i=t
Thus the expected rate of occurrence of new B-modes at t, given A, is

. K
h;4) = ﬁ’—/’(g’—i) = Y e
i=1

—A

Consider the average (i.e. expected) value of h t; A Z Ae over all possible

random samples A =(A,,---,A, ), where A, ~ A for z—l, ,K . We obtain
E(h(sA) = ZE(A e™) = KE(ae™) (15)

Let h(t)= E(h(z;A)). Thus A(t) is the unconditional expected rate of occurrence of new
B-modes at test time t averaged over all possible random samples A. By (14) and (15)
we have

plt) = 4, +(1—lud)’lB,K+:udh(t) (16)

This expression for p(t) is similar in form to the Crow/AMSAA approximation to
p(t; A) given in Equation (14):

K
pc(t;j,_) = /ZA+ZI d.)A; + psh ()
i=1

where reference to 4 was suppressed in the notation.

The expression in (16) for the expected system failure intensity after
incorporation of B-mode fixes is actually quite appealing to one’s intuition if put in a
slightly different form. To arrive at this form we shall simply subtract and add the term

h(z) on the right hand side of Equation (16). Doing this we can express p(t) by

plt) = A, +( =1, WAsi — )+ h(2) (17)

Now we see that ,o(t) is the sum of three failure intensities. The first is simply the

constant failure intensity due to the A-modes. To consider the second failure intensity we
shall first consider A(t). We have shown that this term is the expected rate of occurrence

of new B-modes at test time t averaged over the random samples A. Additionally, A)
is the expected failure intensity contribution to o(¢) due to the set of B-modes that have
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not been surfaced by t. To see this, first note that the failure intensity at time t,
conditioned on A = A, due to unsurfaced B-modes is u(t; 1) where

(62 - Sa-1004 a9

i=1

Récall by (4),
E[L()] = 1-e*
with respect to the first occurrence of B-mode 1. Thus by (18) we have
K K
E[u(t;/_?,)] = Z’Zi - Z/ziE[[i (t)]

i=l

i=

K
= Y e = h(4) (19)

i
=l

It immediately follows from (19) that A(¢) is the unconditional expected failure intensity
due to the set of unsurfaced B-modes at time t, since A(¢)= E(h(z; A)).

Finally, we consider the second term of p(¢) in (17). In the absence of any fixes,
the sum of A(z) and the unconditional expected failure intensity due to the set of B-modes
surfaced by t, denoted by s(t), must equal A, . Thus s(t)= Agx = h(e). If we
implement fixes to the B-modes surfaced by t with an average FEF equal to x,, then the
residual expected failure intensity due to the set of surfaced B-modes would be

(- p)s6) = (=)Ao — ) @0

In the above equations we can replace 4, , by h(0) since at t=0 all B-modes are

unsurfaced. Thus
ho) = 4,4 | 1)

'As in Section 4.3, we call the residual expected failure intensity approached by
.p(t) as t tends towards infinity the growth potential failure intensity, denoted by p, .

Since limh(t)=0 we have

t—x

Pepr = ’?,4 + (1 —Hy )’Zs (22)
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Note this expression has a form similar to that for the growth potential in the Crow/
AMSAA model. The quantity p, is called the growth potential MTBF. The growth

potential for the AMPM is used in the same way as indicated in Section 4.3 for the Crow/
AMSAA model. ~

Another useful quantity is the expected fraction of the system expected initial B-
mode failure intensity, 4, , surfaced as a function of test time t. We shall let 4(¢) denote

this quantity. Thus, by definition of s(t), we have

o) = SO A0 23)

8.K /zB,K

Note that &{t) is independent of the corrective action process. By this we mean that ()
does not depend on when fixes are implemented nor on how effective they are.

The function &(t) can usefully serve as a measure of system maturity. Observe

that for a test of duration t, no matter how effective our fixes are, we can only expect to
eliminate at most a fraction equal to &(z) of the expected B-mode contribution to the

initial system failure intensity. Thus low values of &(z) would indicate additional testing
is required to surface a set of B-modes that account for a significant part of 4,. A high
value for #(t) could indicate that further testing is not cost effective. Resources would be
better expended toward formulating and implementing corrective actions for the surfaced
B-modes. As part of a reliability growth plan it would be useful to specify goals for &(r)
at several program milestones.

Next we shall express the key AMPM reliability projection quantities in terms of
K and the gamma parameters & and 4. By Appendix D, Annex 2, we have

/ls,x = Kﬂ(a'*'l) (24)
M) = Ki-(+ po)ye) 25)
_ KBla+1) dult)
He) = (1+ ge)" T dt (26)
o) = A, (- ) KB r)s LKA ) o)
(1+ﬂt)a+2
and
o) = 1-(+p)? (28)
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Utilizing Equation (24) for 4, , we can also express h(¢) and plz) as follows:

L | (29)
- (1+ﬁt)a+2 .
and
s sk
4,0(t) | = A, +(1_/ud)’zB.K +(l—/-+l-—,§;)'a_+2 (30)

In the next section, we shall consider the behavior of the AMPM as K increases.
Limiting expressions for the AMPM quantities in (24) through (30) will be obtained as
K — o under natural assumptions about 4, , and f= f, . Then parameter estimation

procedures will be specified for the finite K AMPM and the limiting parameters as
K> w.

4.4.4 Limiting Behavior of AMPM. We shall now consider the limiting behavior
of the AMPM as K increases. To do so we first define step processes
{XK_‘.(t),OSt <oo} for i=1,---,K where

% (t) 1 if B—mode ioccurs by t
o 0 otherwise

Note

Pr(X,,()22) = 0 (1)

and

Pr(XK.i (t) = 1) = 1= Pr(XK,i (’) = 0) (32)

Thus to complete our definition of these processes, we need only specify Pr(X ki (t)= O).

To keep the definition of these processes consistent with the AMPM assumptions we
define

«©

PrX,,(6)=0) = [e*f, (A4 (33)

0

where A ~T'(a, £) and f, is the previously defined gamma density function with
a=a, and f=pf,. Note X, (¢) is the unconditional AMPM indicator function for B-

mode i corresponding to the earlier defined conditional indicator function' /,(¢) where
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Pr(7,()=0) = e™*
and subscript K was suppressed. By (33) and Appendix D, Annex 2
Pr(x,,()=0) = Ele™) = w1 = (+8)" . (39

From (32) and (34) we obtain

= SE{,0)=1) = K-K0+ B = M) 69)

i=l

for (@, , B¢ )=(a, B). Thus the AMPM step processes {XK’,. (),o<t< oo}, 1<i<K,
give rise to our previously developed AMPM.

To investigate the behavior of our projection model as K increases, we must
specify the limiting behavior of @, and f, . Since S, is simply a scale factor for test

time t it is reasonable to keep £, fixed, say B, = 4, €(0,»). Recall by (24),
Ay =K By (a, +1). Regardless of the value of K, Ag x Tepresents the unconditional

expected B-mode contribution to the initial system failure intensity. Thus it is natural to
let K B (a,+1) = 4, € (0,0) for all K. Actually, to obtain our results for the

limiting behavior of the AMPM we need 6nly insist that

limpg, = f,<(0,) | (36)
and -
lim X f, (@ +1) = 4, €(0,0) (37)

We shall simply denote £, and 4, by £ and A4,, respectively. Since o, +120, (36)
and (37) imply

lima, = -1 (38) -

Koo

Let X, (z) be the supposition of the independent step processes X  , (t), ie.
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« .
2 Xeil0) (39)

It is demonstrated in [4] that the stochastic process {X,(t), 0<t <o} converges to a
nonhomogeneous Poisson process (NHPP) with mean value function g, (t) as K >,
where

4,(t) = (%"Jln(Hﬂt) | | (40)

This result suggests that for complex systems or subsystems, we can expect our AMPM
process {X (1), 0<t <o} to behave like a NHPP {X_, (), 0<¢ <} where X_(¢) is the

- number of distinct B-modes that occur by t and E {X,(t)}= p,(t) given in (40).

We can now relate the key AMPM reliability projection quantities in (24) through
(28) which depend on K to the corresponding NHPP quantities. To do so we shall
subscript the AMPM quantities by K and the NHPP quantities by . Thus, for example,
by (24) and limit condition (37) we have

im e = A5, €(0,) B3
(where we also denote 4, , simply by 4;). By (26) we also have

K B, aK+1
/‘K(t) = j(1+,3K agel

Thus

R el

By (36) through (38) and (40) this yields

) = B < (Zlues) - w0 @

1+ £
Again by (26), (36) through (38) and (40), we obtain
imh () = lim K filay +1)

Koo - K-)uo(1+ﬂK )aK+2
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/ZB —_ dﬂw(t) —
1+8t dt ha(t) (43)

By (27), (36) through (38) and (43) we arrive at

Hy K Sy (aK + 1)}

lim p, (¢) lim {/ZA + (1= u)K By (ag *"1)*' (1+ B, 1)

K- K0

A
/ZA+(1_lud)/ZB+iud L = ZA+(1—/ud)/lB+/ldhco(t)
+ [t

= p(0) (44)
Additionally, by (22) and (41) we have
ll(i_rg Pork = ,1}_12 {/?’A +(1~ 4, )’za,x }
= A+ (1 "/‘d)’ie = Popw (45)

Finally, by (28), (36) and (38) we deduce
lim 4, (t) = lim {1_ (1 + By t)—(aK+2)} _ Yoz

K—o Koo 1+ ﬂt

Thus by (43) we conclude
ima () = L1 - O _ 0 (46)
Ko K L+ ft Ay

4.4.5 Estimation Procedure for AMPM. In this section we shall specify the
procedures to estimate key AMPM parameters and reliability measures expressed in
terms of these parameters. Estimation equations will be given for the finite K and NHPP
variants of the continuous AMPM. The model parameter estimators are mle’s. Statistical
details and further discussion of the estimation procedures are provided in Appendix D,
Annex 3.

Our parameter estimates are written in terms of the following data: m = number of
distinct B-modes that occur over a test period of length T, ¢ =(¢,,+, tm) where

O<t <t,<---<t, <T are the first occurrence times of the m observed B-modes, and

n, = number of A-mode failures that occur over test period T. We shall denote an
estimate of a model parameter or expression by placing the symbol “*” over the quantity.
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The finite K AMPM estimates are based on a specified value of K. If we hold the
test data constant and let K — o we obtain AMPM projection estimates that are
appropriate for complex subsystems or systems that typically have many potential B-
modes. The AMPM limit estimating equations are derived in Appendix D, Annex 3.
These equations can also be obtained from mle equations for the NHPP associated with
the AMPM. This process was discussed in Section 4.4.4 and has the mean value function
given by Equation (40).

Recall @, f, are the gamma parameters for the AMPM where it is assumed the K
initial B-mode failure rates are realized values of a random sample from a gamma
random variable (e, , £ ).

The mle for Py is B, where

LI T| & - T -t
Zln +,A6K Z 1 _ miHK Z TAt,
O+ et N+ f I+4, 7)™ 1+ 4, ¢,

A

{1n(1+,})’KT)}f_: LI N T
Sepot ) 1+ AT

" A

The mle for @, is ax where ax can be easily obtained from £, and either equation

below. These equations are the maximum likelihood equations for &, and g,
respectively (see Appendix D, Annex 3):

: B . n (148, T
(arK+1) = m" Kln(l+,6,( T)—Zln i-f-"- (48)
R (P

m —Z ti

m
i=]

. ﬂK i l+IBK1

ax+l = (49)
DI
1+ﬂK = +ﬁx:
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A A

Using (a £, 0¢.K J we can estimate all our finite K AMPM quantities where the

A-mode failure rate 4, is estimated by 44 = "4 T and the average B-mode fix

effectiveness factor u, is assessed as
. 1 .
4 = ~Yd (50)

In (50), the assessment d; of the fix effectiveness factor (FEF) for observed B-mode i

will often be based largely on engineering judgement. The value of d; should reflect

several considerations: (1) How certain we are that the problem has been correctly
identified; (2) the nature of the fix, e.g., its complexity; (3) past FEF experience and (4)
any germane testing (including assembly level testing).

" Note the left-hand side of Equation (47) requires a value for K before we can

A

numerically solve for #, . In practice we do not know the value of K. We could attempt

to use the data (m,g) to statistically estimate K. However, graphs presented in the next

section illustrate the difficulty in obtaining a reasonable estimate for K even for a large
data set that appears to fit the model well. Thus we prefer to take the point of view that
we should not attempt to statistically assess K. However, by conducting a standard
failure modes and effects criticality analysis (FMECA), we can place a lower bound on
K, say K,. Our experience with the AMPM indicates that if K is substantially higher

than m , say, e.g., K 210m, then our AMPM projection quantities will be insensitive to
the value of K. We believe for a complex system or subsystem it will often be the case
that K, 210m or at least the unknown value of K will be 10m or higher. The factor 10

may be larger than necessary. We suggest exercising the finite K AMPM with several
plausible lower bound values for K and comparing the associated projections with those
obtained in the limit as X — oo . This is illustrated for a data set in the next section.

To obtain the limiting AMPM projection model estimates consider the sequence of

A

where we assume satisfies Equation (47
K>K, oy q (47)

for each K > K. In Appendix D, Annex 3 it is shown that

finite K AMPM estimates < By >

B. = limB, <(0,%) (s1)

Kow»

is a finite positive value. Moreover, it is demonstrated that
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- = 0 (52)

o)

iMs=

It is also shown that

A A

@ = limax = -1 (53)

K>

where for each £,, K > K, a« satisfies Equation (48) (or Equation (49)). The

limiting AMPM estimates £ and A, given below in Equation (55), can be shown to
be mle’s for parameters /4, and 1, . Recall these parameters define the NHPP
discussed in Section 4.4.4 whose mean value function is given in Equation (40).

For ease of reference, the finite K AMPM and limiting AMPM estimates for key
projection model quantities are listed below and indexed by K and <o, respectively:

ik = K,AﬂK(cAzK+l) (54)
do = P (55)
ln[1+,ﬁwT)
4ee) = Kl—(nifxt){ ) (56)
. /“ZM .
u ) = | & ln(1+ﬂwt) (57)
s.
hel) = —25 - (58)
N ax+2
(1+ﬂ,<t)
holt) = 22 (59)
1+ ft
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Porx = Autll- Jisk (60)

Poreo = /ZA+[1—ﬂ;J/lB,m (61)
pelt) = popxt uy i) (62)
P.t). = Popat by halt) (63)

)-(am)

Oc(t) = 1—(1+ﬂKt (64)
O-(t) = A o : (65)
1+ 4.t
Note (55) together with (57) imply
R :“'w .
u,(T) = | & 1n(1+,6’mT) = m (66)

ﬁd

This agrees with intuition in the sense that x_(T) is an estimate of the expected number

of distinct B-modes generated over the test period [0,T] while m is the observed number
of distinct B-modes that occur. :

Suppose we adopt the view that our “model of reality” for a system or subsystem is
the AMPM for a finite K which is large but unknewn. Then we can consider the limiting
AMPM projection estimates as approximations to the AMPM estimates that correspond
to the “true” value of K. Our discussion in this section suggests that over the projection
range of t 2T values of practical interest, the limiting estimates should be good
approximations for complex systems or subsystems. In this sense, knowing the “true”
value of K is usually unimportant. Note, however, it is useful to have available the
computational formulas for the finite K AMPM projection estimators as a function of K.

For example, we can compare the graphs of a projection estimator such as p, (t) or

4, (t) over the t range of interest for different values of K to the corresponding limiting
estimator. In this fashion we can discern the nature of the convergence, for example, the
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rapidity of convergence and whether the convergence is strictly increasing or decreasing
for t values of interest. This type of graphical analysis is illustrated with an example.

4.4.6  Example. We shall illustrate several key features of our projection model
and associated estimators by applying the model to a data set generated during an Army

system development program. Here, we shall just focus on the B-modes and let 24 =0
This test data set consists of m =163 B-mode first occurrence times generated over
T =8000 “equivalent” mission hours.

In Figure 1, we display the cumulative number of distinct B-modes versus the

mission hours. We also display the graphs of ,21 X (t) for several values of K. We can
show that the greatest lower bound, K, for the set of K-values for which the AMPM

estimators are well defined corresponds to a degenerate gamma. This limiting gamma
density has zero variance and mean equal to 4, where 4, =4 for i=1,---,K . To avoid

numerical instability, separate maximum likelihood equations were derived and used for
this limiting case. On our graphs we have labeled the curves associated with this case
(i.e., K = K,) IBM to indicate that this limiting form for () coincides with the IBM
model [5]. More explicitly, the IBM model uses this ,u(t) for the expected number of
“non-random” failures experienced in t test hours. This limiting form for 4(¢) also is
used by Musa in his software reliability basic execution time model [6]. It is interesting
to note that the opposite AMPM limiting form, z, (¢), is used by Musa and Okumoto in
their Logarithmic Poisson software reliability execution time model {7]. In both of
Musa’s models, ,u(t) represents the expected number of software failures experienced

over test period [0,t], where t denotes execution time.

Note over the data range, i.e., 0 <t <8000 hours, the graphs of 2, (1) are visually
mdxstmgulshable for K5, SK<oo. In such circumstances the value of K cannot be

reasonably assessed from the test data even if one can formally obtain an mle for K. In
fact, applying the IBM model (where all /4, are implicitly assumed to be equal), we can

always obtain an mle for K whenever

1
—_— t‘_ < -
mS 2

(see Musa, lannino, and Okumoto with respect to the exponential class family [8]).
However, it has been our experience that the IBM estimate of K, K, = K, is often
only marginally higher than m , the observed number of distinct B-modes. Since z, (¢)
approaches K as ¢ — w0, such a low estimate of K forces the slope of Z, (¢) to quickly

approach zero beyond T (Figure 2). Note #, (t) is the slope of i, (¢). Thus we can see

that such a low estimate of K quickly forces i (¢) close to zero for ¢ > T . This in tum
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tends to produce an “optimistic” failure intensity projection, especially when the assessed
value of uq is high. This follows from the formula

ﬁK(t_) = /ZA+(1—/J;)/18,K+/I; hK(t) (67)

which applies for K, <K <. Thus a good fit over [0,T] is not a sufficient condition
to ensure that a projection model will provide reasonable projection estimates for t > 7T .

Looking at Figure 3, as one might expect, the model with K = appears to
provide a more conservative estimate of p'(t) for ¢ > T than do the finite K estimators.
However, for £>T , it is important to note that the i, (t), 2" (¢) and &, () graphs,

displayed in Figures 2, 3, and 4, respectively, quickly become much closer to the
corresponding K = graph than to the K = K ;,, graph as K increases above K, .

Observe from Figure 4, 4, (8000)~ .67 for K, <K <. Thus, whatever the
“true” value of K, we estimate that the remaining B-modes contribute about .33.4, to the
. system failure intensity.
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Cumulative Number of B-modes
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Figure 1. Observed Versus Estimate of Expected Number of B-Modes.
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Figure 2. Extrapolation of Estimated Expected Number of B-Modes As
' Function of K.
(Data Ends at 8000 Hours)

131



Projected MTBF (Hours)
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Figure 3. Projected MTBF for Different K’s.
(Based on Initial 8000 Hours of Data)
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Figure 4. Estimated Fraction of Expected Initial B-Mode Failure
Intensity Surfaced for Different K’s.
(Based on Initial 8000 Hours of Data)
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APPENDIX A

Background
Before going into the specifics of devising reliability growth planning curves, it is
useful to look at the history of this process to learn why the curves have the form that

they do.

The earliest reference that we have found on this subject is An Analytical Model
of Reliability Growth Through Testing by H. K. Weiss, Handbook No. 54 304, 17p, AD-
035 767, May 1954, Northrop Aircraft Inc., Hawthrone, California. Also, a useful survey
of some early reliability growth methods is Reliability Growth Modeling by Larry H.
Crow, Technical Handbook No. 55, August 1972, U.S. Army Materiel Systems Analysis
Agency, Aberdeen Proving Ground, Maryland.

The Duane Postulate.

James T. Duane, an engineer with General Electric’s Motor and Generator
Department, published a paper titled “Leaming Curve Approach to Reliability
Monitoring” in IEEE Transactions on Aerospace, Vol. 2, No. 2, 1964. This paper
recorded his observation that if changes to improve reliability (which are now termed
fixes) are incorporated into the design of a system under development, then on a log-log
plot, the graph of cumulative failure rate vs. cumulative test time is linear. This
observation has become known as the “Duane Postulate.” This empirically derived
statement is the key to the most commonly accepted growth model in use today (see
Section 6.1.4). A graph given in Duane’s paper is shown in Figure 6.1. The straight lines
are based on a least squares fit of the data. The negative slope of each line is defined to
be the growth rate, «, for that line.

Duane’s Growth Model.

—_P———————————————

On a Log-Log Plot, the graph of

Cumulative Failure Rate
Vs
Cumulative Test Time

is Linear
ml

Let N (t) = the total Number of failures by time t. Then the average failure rate,
also called Cumulative failure rate C(t), can be found by dividing N(t) by t.



Let o be the y-intercept on a log-log plot of the straight line that Duane
postulated. The slope-intercept formula for this line then becomes:

Log C(t) = S—a Logt

where log denotes the natural (base €) logarithm (although any base could be used).

The Duane Postulate:

LogC(t)=0-alogt

Taking anti-logs
Ct) = At™”

where
o = InA

Multiplying C(t) by t gives N(t), and multiplying ™ by t adds 1 to the exponent,

So
N(@) = At"°

Taking the first derivative of the number of failures with respect to time gives the
instantaneous failure rate, r(t), at time t. ‘

d N(t)

r(t) = ey

= /l(l—q)t'“ |

Duane’s model thus has two parameters, @ and 4. The first, &, determines the
shape of the growth curve. The second, A, is the size parameter for the curve. With
these two parameters, the cumulative number of failures N(t), the average failure rate
C(t), and the instantaneous failure rate r(t) can be calculated for any time t within the test.
Further, given & and A4, it is possible to solve for t, the amount of testing time it will take
to achieve a specific reliability. This assumes that the factors affecting reliability growth
remain unchanged across the development.

Drawbacks to Duane’s Method.

Duane stated that @ could be universally treated as being .5, as that seemed to be
the modal value within his database. This has since been shown to be unrealistic. It does
not allow for different test environments causing failures to be surfaced at different rates,
and for different levels of engineering effort causing different rates of fix insertion.
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The reliability values calculated using his method are treated as being
deterministic. That is, there is no allowance for the variation that is typically observed
about an estimated value, and there is no way of judging whether the observed value,
which rarely matches the estimated value, is close enough. Further, there is no way to
check whether the model is valid for the current test situation.

All Duane growth curves pass through the origin of the graph. That is, the item
under test is imputed to have zero reliability at the start of test.

The Crow/AMSAA Growth Model. _

Larry H. Crow while at the U.S. Army Materiel Systems Analysis Activity’s
Reliability and Maintainability Division published Reliability Analysis for Complex,
Repairable Systems, Technical Handbook No. 138, December 1975, U.S. AMSAA,
Aberdeen Proving Ground, Maryland. In this report, Dr. Crow explored the advantages
of using a Nonhomogeneous Poisson Process with a Weibull intensity function to model
several phenomena, including reliability growth. If system failure times follow the
Duane Postulate, then they can be modeled as a Nonhomogeneous Poisson Process with
Weibull intensity function. To make the transition from Duane’s formulae to the Weibull
intensity functional forms, £ has to be substituted for 1 — . Thus the parameters in the

Crow model are A and 4, where f determines the shape of the curve. The physical
interpretation of 4 (called the growth parameter) is the ratio of the current
(instantaneous) MTBEF to average (cumulative) MTBF at time t.

This stochastic interpretation immediately brings the benefits of Statistics to the
formulae that Duane had derived. That is, the parameters 4 and 4 can be determined

using maximum likelihood estimators (mle’s) rather than 4 being assumed to be fixed.

Further, hypothesis tests and confidence limits can be determined for the parameters, and
Goodness-of-Fit tests can be performed on the model. This eliminates the first two
drawbacks of Duane’s model. We will discuss later how Crow handles the problem of
imputed zero reliability at the start of test.

One should take note that even though the growth rate estimate @ can be calculated from

Crow’s growth parameter estimate, £, and it is still interpreted as the estimate of the
negative slope of a straight line on a Log-Log plot, Crow’s estimates of 4and / are

somewhat different from the ones derived using Duane’s procedures. This follows from
the fact that the estimation procedure is mle, not least squares, thus each model’s
parameters correspond to different straight lines, respectively.
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APPENDIX B
TABLES

The following tables provide appfoximations to the probability of acceptance,
Prob(A; y7A d), where u denotes the expected number of failures and d = M(T)/TR. The
tabular entries were calculated using a modification to Equation (25). This modification
entails (1) approximating zi(n) by 4n,(f+2'7 and (2) conditioning on N = 2 instead of
N 2 1. Thus, in Equation (25) the expression 1-e™* is replaced by
1-P(N<1)=1-¢e* - £ and the summation is over N = 2.

The approximation used for zi(n) follows from the lower confidence bound

approximation given by
t(ns) = (n/z;,,)M, M)

where M , is the mle of M(T) calculated from the observed data s = (ty, ty,...t,). Here t

denotes the cumulative operating time to the i* failure. This approximation was

suggested by Dr. Latry Crow for conveniently approximating #,(n, s). It has been our
experience that the approximation in (1) results in slightly more conservative lower

bounds on M (T) than 4,(n, s). This implies that use of the corresponding approximation
to zi (n) would yield slightly smaller values of Prob(4; ,d) than one would obtain by

utilizing z;(n) . Based on our experience with Prob(A; u,d ) estimated by simulation, the

approximating values appear to be within 0.01 of values obtained through simulation.
We also observed that the approximation improves as n increases. The comparison
between the lower confidence bound approximation given by (1) and the lower

confidence bound using z i (n) was based on Table 2 contained in Section 3. Since the
entries in this table were for n > 2, the probability of acceptance, Prob(A; u,d ) was
conditioned on N 2 2. In most cases of interest for the model discussed in this report,
Prob (V > 2) will be close to one. In this situation, conditioning on N > 2 yields values
of Prob(4; i, d) that are, for practical purposes, essentially the same as those obtained by
conditioning on N >1.

The entries in these tables were calculated using the well-known relationship
between the complement of a Chi-square distribution function and the cumulative
Poisson sum. This relationship was applied to calculate

, L %)
Prob | %, 2
2ud

in the expression for Prob(A; ud ) in Section 2.1.3 with zi (n) replaced by its

approximation, 1.e., 4n,z',f+2', . In terms of the cumulative Poisson sum, this yields
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= Ye % @)

where
w o= (ngh,,)/ ().

With additional computational effort, one can more precisely calculate Prob(A; u,d ) by
iteratively solving for z, (n) as the z-solution to Equation (13) of Section 2.1.3 over an

appropriate range of n. Then Equation (2) can be utilized with 2n z,iz,r replaced by

z,2 (n)/ 2.

The tables contained in this appendix are approximation values of Prob(A; u,d)
for three confidence levels; namely, for y =0.70, y = 0.80, and y = 0.90.
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70 PERCENT CONFIDENCE
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 5 6 7 8 9 10 11 12
1.00 0.131 0.150 0.163 0.173 0.180  0.186 0.191 0.195
1.05 0.150 0.171 0.187 0.199  0.208 0.216 0.224 0.230
1.10 0.169 0.194 0.212 0.226  0.238 0.249 0.258 0.266
1.15 0.189 0.217 0.238 0.255 0.269 0.282 0.294 0.304
1.20 0.209 0.240 0.264 0.284 0.301 0.316° 0.330 0.343
1.25 0.231 0.264 0.291 0314 0334 0.351 0.368 0.383
1.30 0.252 0.289 0.319 0.344 0.367 0.387 0.405 0.422
1.35 0274 0314 0.347 0.375  0.400 0.422 0.443 0.462
1.40 0.296 0.339 0.375 0.405 0.432 0.457 0.479 0.500
1.45 0.318 0.364 0.402 0.435 0.465 0.491 0.515 0.538
1.50 0.340 0.389 0.430 0.465 0.496 0.525 0.550 0.574
1.55 0362 0.414 0.457 0.494 0.527 0.557 0.584 0.609
1.60 0384 0438 0.484 0.523  0.557 0.588 0.616 0.642
1.65 0.406 0462 0.510 0.550 0.586 0.618 0.647 0.673
1.70 0.427 0.486 0.535 0.577 0.614 0.647 0.676 0.703
1.75 0.448 0.509 0.560 0.603  0.641 0.674 0.704 0.730
1.80 0.469 0.531 0.583 0.628 0.666 0.700 0.729 0.756
1.85 0.489 0.553 0.606 0.651 0.690 0.724 0.754 0.780
1.90 0.509 0.575 0.628 0.674 0.713 0.746 0.776 0.802
1.95 0.529 0.595 0.650 0.695 0.734 0.768 0.797 0.822
2.00 0.548 0.615 0.670 0.716  0.754 0.787 0.816 0.840
2.05 0.566 0.634 0.689 0.735 0.773 0.806 0.833 0.857
2.10 0.584 0.652 0.708 0.753  0.791 0.823 0.849 0.872
2.15 0.601 0.670 0.725 0.770  0.807 0.838 0.864 0.885
2.20 0.618 0.687 0.742 0.786  0.823 0.853 0.877 0.898
2:25 0.634 0.703 0.758 0.802  0.837 0.866 0.890 0.909
2.30 0.650 0.719 0.773 0.816 0.850 0.878 0.901 0919
2.35 0.665 0.733 0.787 0.829 0.863 0.889 0.911 0.928
2.40 0.679 0.747 0.800 0.841 0.874 0.900 0.920 0.936
2.45 0.693 0.761 0.813 0.853 0.884 0.909 0.928 0.943
2.50 0.706  0.774 0.825 0.864 0.894 0.917 0.936 0.950
2.55 0.719 0.786 0.836 0.874  0.903 0.925 0.942 0.955
2.60 0.732  0.797 0.846 0.883 0.911 0.932 0.948 0.960
2.65 0.743 0.808 0.856 0.892 0918 0.938 0.954 0.965
2.70 0.755 0.818 0.865 0900 0.925 0.944 0.958 0.969
2.75 0.766 0.828 0.874 0.907 0.932 0.950 0.963 0.973
2.80 0.776  0.837 0.882 0914 0.937 0.954 0.967 0.976
285 [0.786 0.846 0.889 0.920 0.943 0.959 0.970 0.978
2.90 0.795 0.855 0.896 0926 0.947 0.963 0.973 0.981
2.95 0.804 0.862 0.903 0932 0.952 0.966 0.976 0.983
3.00 0.813 0.870 0.909 0.937 0.956 0.979 0.985
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 13 14 15 16 17 18 19 20
1.00 0.199 0202 0.206 0.208 0.211 0.213 0.215 0.217
1.05 0.235 0241 0.245 0.250 0.254 0.258 0.262 0.265
1.10 0.274 0.281 0.288 0.294 0300 0.306 0.311 0.316
1.15 0314 0323 0332 0.340 0.348 0.355 0.363 0.369
1.20 0355 0366 0377 0.387 0.397 0.406 0.415 0.423
1.25 0.397 0410 0423 0.435 0.446 0.457 0.467 0.477
1.30 0.438 0.454 0468 0.481 0.494 0.507 0.519 0.530
1.35 0.480 0496 0.512 0.527 0.542 0.555 0.568 0.581
1.40 0.520 0.538  0.555 0.572  0.587 0.602 0.616 0.629
1.45 0.559 0.578 0.597 0.614 0.630 0.646 0.660 0.674
1.50 0.596 0.617 0.636 0.654 0.671 0.687 0.702 0.716
1.55 0.632 0.653 0.673 0.691 0.709 0.725 0.740 0.754

-1.60 0.666 0.687 0.707 0.726  0.743 0.759 0.774 0.788
1.65 0.697 0.719 0.739 0.758  0.775 0.791 0.805 0.819
1.70 0.727  0.749  0.769 0.787 0.804  0.819 0.833 0.846
1.75 0.754 0.776  0.796 0.813  0.829 0.844 0.857 0.869
1.80 0.780 0.801 0.820 0.837 0.852 0.866 0.879 0.890
1.85 0.803 0.823 0.842 0.858 0.873 0.886 0.897 0.908
1.90 0.824 0.844 0.861 0.877 0.891 0.903 0.913 0.923
1.95 0.843 0.862 0.879 0.894 0.906 0918 0.927 0.936
2.00 0.861 0.879 0.895 0.908 0.920 0.930 0.939 0.947
2.05 0.877 0.894 0.908 0:921  0.932 0.941 0.949 0.956
2.10 0.891 0.907 0.921 0932 0.942 0951  0.958 0.964
2.15 0903 0919 0.931 0942 0951 0.959 0.965 0.970
2.20 0915 0929 0.941 0.950 0.959 0.965 0.971 0.976
2.25 0925 0938 0949 0958 0.965 0.971 0.976 0.980
2.30 0934 0946 0.956 0964 0.970 0.976 0.980 0.984
2.35 0942 0953 0.962 0.969 0.975 0.980 0.984 0.987
2.40 0.949 0.959 0.967 0974 0979 0.983 0.987 0.989
2.45 0955 0965 0.972 0978  0.982 0.986 0.989 0.991
2.50 0.961 0969 0.976 0.981 0.985 0.989 0.991 0.993
2.55 0966 0973 0.979 0.984 0.988 0.990 0.993 0.994
2.60 0970 0977 0982 0987 0.990 0.992 0.994 0.995
2.65 0974 0980 0.985 0.989 0.991 0.993 0.995 0.996
2.70 0977 0983 0.987 0.990 0.993 0.995 0.996 0.997
2.75 0980 0985 0.989 0.992  0.994 0.996 0.997 0.998
2.80 0.982 - 0987 0.991 0.993  0.995 0.996 0.997 0.998
2.85 0984 0989 0.992 0.994 0.996 0.997 0.998 0.998
2.90 098 0990 0.993 0.995 0.996 0.997 0.998 0.999
2.95 0988 0992 0.994 0.996 0.997 0.998 0.999 0.999
3.00 0990 0.993 0.995 0.996  0.998 0.998 0.999 0.999
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/ TR 21 22 23 24 25 26 27 28
1.00 0.219 0.221 0.223 0.224 0.225 0.227 0.228 0.229
1.05 0269 0.272 0275 0.278 0.280 0.283 0.286 0.288
1.10 0.321 0326 0.331 0335 0.339 0.343 0.347 0.351
1.15 0376 0.382 0.388 0394 0.400 0.406 0411 0.417
1.20 0.432 0.440 0.447 0.455 0.462 0.469 0.476 0.482

-1.25 0487 0496 0.505 0.514 0.523 0.531 0.539 0.547
1.30 0.541 0.552 0.562 0.572  0.581 0.590 0.599 0.608
1.35 0.593 0.605 0.616 0.626  0.637 0.646 0.656 0.665
1.40 0.642 0.654 0.666 0.677 0.688 0.698 0.708 0.717
1.45 0.688 0.700 0.712 0.723 0.734 0.745 0.755 0.764
1.50 0.729 0.742 0.754 0.765 0.776 0.786 0.796 0.805
1.55 0.767 0.780 0.792 0.803 0.813 0.823. 0.832 0.841
1.60 0.801 0.813 0.825 0.835 0.845 0.854 0.863 0.871
1.65 0.831 0.843 0.854 0.863 0.873 0.881 0.889 0.897
1.70 0.858 0.868 0.878 0.888  0.896 0.904 0.911 0918
1.75 0.881 0.891 0.900 0.908 0.916 0.923 0.929 0.935
1.80 0900 0910 0918 0.925 0.932 0.939 0.944 0.949
1.85 0917 0926 0.933 0.940 0.946 0.951 0.956 0.961
1.90 0931 0939 0.946 0952 0.957 0.962 0.966 0.970
1.95 0944 0950 0.956 0.961 0.966 0.970 0.973 0.977
2.00 0954 0960 0.965 0969 0.973 0.977 0.980 0.982
2.05 0962 0.967 0.972 0976  0.979 0.982 0.984 0.986
2.10 0969 - 0974 0.977 0.981 0984  0.986 0.988 0.990
2.15 0975 0979 0.982 0.985 0.987 0.989 0.991 0.992
2.20 0980 0983 0.986 0988 0990  0.992 0.993 0.994
2.25 0984 0986 0.989 0991 0.992 0.994 0.995 0.996
2.30 0.987 0.989 0.991 0993 0994 0995  0.996 0.997
2.35 0989 0991 0.993 0.994 0.995 0.996 0.997 0.998
2.40 0.991 0993 0.995 0.996 0.996 0.997 0.998 0.998
245 0993 0.995 0.996 0997 0997 0.998 0.998 0.999
2.50 0.995 0996 0.997 0.997 0.998 0.998 0.999 0.999
2.55 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999
2.60 0996 0.997 0.998 0.998 0.999 0.999 0.999 0.999
2.65 0.997 0998 0.998 0.999 0.999 0.999 0.999 1.000
2.70 0998 0.998 0.999 0.999  0.999 0.999 1.000 1.000
2.75 0998 0999 0.999 0.999 0.999 1.000 1.000 1.000
2.80 0999 0999 0.999 0.999 1.000 1.000 1.000 1.000
2.85 0.999 0999 0.999 1.000  1.000 1.000 1.000 1.000
2.90 0.999 0999 1.000 1.000  1.000 1.000 1.000 1.000
2.95 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
3.00 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 29 30 31 32 33 34 35 36
1.00 0.231 0232 0.233 0.234  0.235 0.236 0.236 0.237
1.05 0.291 0.293 0.295 0.297  0.300 0.302 0.304 0.306
1.10 0355 0359 0.362 0.366 0.369 0.373 0.376 0.379
1.15 0.422 0427 0.432 0.437 0.441 0.446 0.450 0.455
1.20 0.489 0.495 0.501 0.507 0.513 0.519 0.525 0.530
1.25 0.554 0.562 0.569 0.576  0.582 0.589 0.596 0.602
1.30 0.616 0.624 0.632 0.640 0.648 0.655 0.662 0.669
1.35 0.674 0.683 0.691 0.699 0.707 0.715 0.722 0.729
1.40 0.727 0.735 0.744 0.752  0.760 0.767 0.775 0.782
1.45 0773  0.782 0.790 0.798 0.806 0.813 0.820 0.827
1.50 0.814 0.822 0.830 0.838 0.845 0.852 0.859 0.865
1.55 0.849 0.857 0.864 0.871 0.878 0.884- 0.890 0.896
1.60 0.879 0.886 0.893 0.899  0.905 0.911 0.916 0.921
1.65 0.904 0910 0916 0922 0.927 0.932 0.936 0.941
1.70 0924 0930 0.935 0940 0.944 0.948 0.952 0.956
1.75 0.941 0946 0.950 0954 0.958 0.961 0.965 0.968
1.80 0.954 0958 0.962 0.965 0.969 0.971 0.974 0.976

1.85 0965 0.968 0.971 0974 0.977 0.979 0.981 0.983
1.90 0973 0976 0.978 0981 0.983 0.985 0986  0.988
1.95 0979 0982 0.984 0.986  0.987 0.989 0.990 0.991
2.00 0984 0986 0.988 0.990  0.991 0.992 0.993 0.994
2.05 0988 0.990 0.991 0.992  0.993 0.994 0.995 0.996
2.10 0991 0992 0.994 0994 0995 . 0.996 0.997 0.997
2.15 0.993 0994 0.995 0.996 0.997 0.997 0.998 0.998
2.20 0995 0.99 0.997 0.997 0.998 0.998 0.998 0.999
2.25 0996 0.997 0.998 0.998  0.998 0.999 0.999 0.999
2.30 0997 0998 0.998 0999 0999 0999  0.999 0.999
2.35 0998 0.998 0.999 0.999 0.999 0.999 0.999 1.000
2.40 0999 0999 0.999 0.999 0.999 1.000 1.000 1.000
2.45 0.999 0999 0.999 0.999 1.000 1.000 1.000 1.000
2.50 0999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
2.55 0999 1.000 1.000 1.000  1.000 1.000  1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 37 38 39 40 41 42 43 44
1.00 0.238 0.239 0.240 0.240 0.241 0.242 0.242 0.243
1.05 0.308 0.309 0.311 0313 0.315 0.317 0.318 0.320
1.10 0.382 0.385 0.388 0.391 0.394 0.397 0.400 0.403
1.15 0.459 0.464 0.468 0.472 0.476 0.480 0.484 0.488
1.20 0.535 0.541 0.546 0.551 0.556 0.561 0.566 0.570
1.25 0.608 0.614 0.620 0.626 0.632 0.637 0.643 0.648
1.30 0.676  0.682  0.688 0.695- 0.701 0.707 0.712 0.718
1.35 0.736  0.743  0.749 0.755 0.762 0.768 0.773 0.779
1.40 0.789 0.795 0.802 0.808 0.814 0.819 0.825 0.830
1.45 0.834 0.840 0.846 0.851 0.857 0.862 0.867 0.872
1.50 0.871 0.877 0.882 0.887 0.892 0.897 0.901 0.906
1.55 0901 0906 0.911 0916 0.920 0.924 0.928 0.931
1.60 0925 0930 0934 0.938  0.941 0.945 0.948 0.951
1.65 0944 0948 0.952 0.955 0.958 0.961 0.963 0.966
1.70 0.959 0962 0.965 0.968 0.970 0.972 0.974 0.976
1.75 0970 0973 0.975 0977 0.979 0.981 0.982 0.984
1.80 0979 0980 0.982 0.984 0.985 0.987 0.988 0.989
1.85 - 10985 0.986 0.988 0.989 0.990 0.991 0.992 0.993
1.90 0989 099 0.991 0.992 0.993 0.994 0.995 0.995
1.95 0.992 0993 0.994 0.995 0.995 0.996 0.996 0.997
2.00 0.995 0995 0.99 0.996 0.997 0.997 0.998 0.998
2.05 099 0997 0.997 0.998 0.998 0.998 0.998 0.999
2.10 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999
2.15 0998 0999 0999 = 0999 0.999 0.999 0.999  0.999

1 2.20 0999 0999 0.999 0999 0.999 1.000 1.000 1.000
2.25 0999 0999 0.999 1.000  1.000 1.000 1.000 1.000
2.30 0999 ~ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000

.2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60- 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000  1.000 1.000 1.000
2.70 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000. 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 45 46 47 48 49 50 51 52
1.00 0.244 0.244 0.245 0.245 0.246 0.246 0.247 0.247
1.05 0322 0323 0325 0.326  0.328 0.329 0.331 0.332
1.10 0.406 0408 0411 0414 0416 0.419 0.421 0.424
1.15 0.491 0495 0.499 0.502 0.506 0.510 0.513 0.516
1.20 0.575 0.580 0.584 0.58% 0.593 0.597  0.602 0.606
1.25 0.653 0.659 0.664 0.669 0.673 0.678 0.683 0.687
1.30 0.724 0.729 0.734 0.739  0.744 0.749 0.754 0.759
1.35 0.784 0.790 0.795 0.800  0.805 0.810 0.814 0.819
1.40 0.835 0.841 0.845 0.850  0.855 0.859 0.863 0.867
1.45 0.877 0.881 0.886 0.890 0.894  0.898 0.902 0.905
1.50 0910 0514 00917 0.921 0924 0.928 0.931 0.934
1.55 0935 0938 0.941 0.944 0.947 0.950 0.952 0.955
1.60 0.954 0.957 0.959 0.961 0.964 0.966 0.968 0.970
1.65 0968 0.970 0.972 0974 0975 0.977 0.979 0.980
1.70 0978 0.980 0.981 0982 0.984 0.985 0.986 0.987
1.75 0985 098 0987 0988 0.989 0.990 0.991 0.992
1.80 0990 0991 0.992 0.992  0.993 0.994 0.994 0.995
1.85 0993 0994 0.995 0.995 0.996 0.996 0.996 0.997
1.90 0.996 0.996 0.997 0997 0.997 0.998 0.998 0.998
1.95 0.997 0.998 0.998 0.998 0.998 0.998 0.999 0.999
2.00 0998 0998 0999 0999 0.999 0.999 0.999 0.999
2.05 0999 0999 0.999 0999 0.999 0.999 1.000 1.000
2.10 0.999  0.999 0.999 1.000  1.000 1.000 1.000 1.000

215 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
225 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60- | 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000. 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
295 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 53 54 55 56 57 58 59 60
1.00 0.248 0.248 0.249 0.249  0.250 0.250 0.250 0.251
1.05 0.334 0335 0.336 0.338  0.339 0.340 0.342 0.343
1.10 0.426 0.428 0.431 0.433  0.435 0.438 0.440 0.442
1.15 0.520 0.523 0.526 0.530  0.533 0.536 0.539 0.542
1.20 0.610 0.614 0.618 0.622 0.626 0.629 0.633 0.637
1.25 0.692 0.696 " 0.701 0.705 0.709 0.713 0.717 0.721
1.30 0.764 0.768 0.772 0.777  0.781 0.785 0.789 0.793
1.35 0.823 0.828 0.832 0.836 0.840 0.844 0.847 0.851
1.40 0.871 0.875 0.879 0.883 0.886 0.889 0.893 0.896
1.45 0909 0912 00915 0918 0.921 0.924 0.927 0.929
-1.50 0.937 0.939° 0.942 0.944 0.947 0.949 0.951 0.953
1.55 0957 0.959 0.961 0.963  0.965 0.967 0.968 0.970
1.60 0971 0973 0975 0976 0.977 0.979 0.980 0.981
1.65 0981 0.983 0.984 0.985 0.986 0.987 0.988 0.988
1.70 0.988  0.989 0.990 0.990 0.991 0.992 0.992 0.993
1.75 0992 0.993 0.994 0.994 0.995 0.995 0.995 0.996
1.80 0995 0996 0.996 099 0.997 - 0.997 0.997 0.998
1.85 0997 0.997 0.998 0.998 0.998 0.998 0.998 0.999
1.90 0998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
1.95 0999 0.999 0.999 0.999 0.999 0.999 1.000 1.000
2.00 0.999 0.999 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000  1.000- 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 © 1.000
2.20 1.000 1.000 1.000 1.000  1.000 = 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 " 1.000 1.000 1.000 1.000
245 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 61 62 63 64 65 66 67 68
1.00 0.251 0.252 0.252 0.252 0.253 0.253 0.253 0.254
1.05 0.344 0346 0.347 0.348  0.349 0.350 0.352 0.353
1.10 0.445 0.447 0.449 0.451 0.453 0.455 0.457 0.459
1.15 0.545 0.548 0.55] 0.554 0.557 0.560 0.563 0.566
1.20 0.640 0.644 0.648 0.651 0.655 0.658 0.661 0.665

-1.25 0.725 0.729  0.733 0.737 0.740 0.744 0.747 0.751
1.30 0.797 0.801 0.804 0.808 0.812 0.815 0.819  0.822
1.35 0.855 0.858 0.862 0.865 0.868 0.871 0.874 0.877
1.40 0.899 0902 0.905 0.908 0911 0.913 0.916 0.918
1.45 0932 0934 0.937 0.939 0.941 0.943 0.945 0.947
1.50 0955 0957 0.959 0.961  0.962 0.964 0.966 0.967
1.55 0971 0973 0974 0976 0.977 0.978 0.979 0.980
1.60 0982 0983 0.984 0.985 0.986 0.987 0.987 0.988
1.65 0.989 0.990 0.990 0.991 0.992 0.992 0.993 0.993
1.70 0993 0994 0.994 0.995  0.995 0.996 0.996 0.996
1.75 0.996 0.997 0.997 0.997 0.997 0.998 0.998 0.998
1.80 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999
1.85 0.999 0.999 0.999 0.999  0.999 0.999 0.999 0.999
1.90 0999 0.999 0.999 1.000  1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000 1.000 = 1.000 - 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 " 1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
295 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)TR| 69 70 71 72 73 74 75 76
1.00 | 0254 0254 0255 0255 0255 0256 0256  0.256
1.05 | 0354 0355 0356 0357 0358 0359 0361 0362
1.10 | 0461 0463 0465 0467 0469 0471 0473 0475
115 | 0569 0571 0574 0577 0579 0582 0585  0.587
120 | 0.668 0671 0674 0678 0681 0684 0.687  0.690
125 | 0754 0758 0761 0764 0768 0771 0774  0.777
130 | 0825 0.828 0832 0835 0.838 0841 0844  0.846
135 | 0880 0.883 0.88  0.888 0.891 0.894 0896  0.899
140 | 0921 0923 0925 0927 0930 0932 0934  0.936
145 | 0949 0951 0953 0954 0956 0958 0959  0.961
1.50 | 0968 0970 0971 0972 0974 0975 0976  0.977
155 | 0981 0982 0983 0984 0985 0985 0986  0.987
160 | 0989 0990 0990 0991 0991 0992 0992  0.993
1.65 | 0994 0994 0994 0995 0995 0995 0996  0.996
1,70 | 0996 0997 0997 0997 0997 0998 0998  0.998
175 | 0998 0998 0998 0999 0999 0999 0999  0.999
1.80 | 0.999 0999 0999 0999 0999 0999 0999  0.999
185 | 0999 1.000 1.000 1.000 1.000 1.000 1.000  1.000
190 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
195 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
200 | 1.000 1.000 1.000 1.000 1.000 1.000 -1.000  1.000
205 | 1.000 1.000 1.000 1000 1000 1.000 1.000  1.000
2.10 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
215 | 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
220 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
225 | 1.000 1.000 1000 1000 1000 1000 1.000  1.000

- 230 | 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
235 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
240 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
245 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
250 | 1.000 1.000 1.000 1000 1000 1.000 1.000  1.000
255 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
260 | 1.000 1.000 1.000 1.000 1000 1000 1.000  1.000
265 | 1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
270 | 1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
275 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
280 | 1.000 1.000 1.000 1.000 1.000 1.000 1000  1.000
285 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
290 | 1.000 1.000 1000 1.000 1.000 1.000  1.000  1.000
295 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
300 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

B-15

M(T)/TR 77 78 79 80 81 82 83 84
1.00 0256 0257 0257 0257 0257 0258 0258  0.258
1.05 0.363 0364 0365 0366 0367 0368 0369  0.370
1.10 0.477 0479 0.481 0.483 0.485 0486 0488  0.490
1.15 0590 0.593 0595 0598 0600 0.602 0.605 0.607
1.20 0.693 0.696 0699 0702 0704 0.707 0.710 0.713
1.25 0.780 0.783 0.786  0.789 0.792  0.795 0.797  0.800
130 10849 0852 0855 0.857 0.860 0862 0.865 0.867
1.35 0.901 0903 0.906 0908 0910 0912 0914 0916
1.40 0.937 0.939 0941 0.943 0.944 0946 0948  0.949
1.45 0.962 0.963 0.965 0966 0967 0968 0969  0.971
1.50 0978 0979 0980 0980 0.981 0.982 0983  0.984
1.55 0987 0988 0989 098 0990 099  0.991 0.991
1.60 0993 0.993 0994 0994 0994 0995 0.995  0.995
1.65 0996 0997 0997 0.997 0.997 0.997 0.998  0.998
1.70 0998 0.998 0998 0999 0999 0999 0999  0.999
1.75 0999 0999 0.999 0.999 0.999 0.999 0.999 0.999
1.80 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.90 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

. 2.30 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000° 1.000 1.000 1.000 1.000



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 85 86 87 88 89 90 91 92
1.00 0.258 0.259 0.259 0.259 0.259 0.260 0.260  0.260
1.05 0371- 0372 0.373 0374 0.375 0.376 0.377 0.378
1.10 0.492 0.493 0.495 0.497  0.499 0.500 0.502 - 0.504
1.15 0.610 0.612 0.614 0.617 0.619 0.621 0.624 0.626
1.20 0.715 0.718 0.721 0.723  0.726 0.728 0.731 0.734
1.25 0.803 0.805 0.808 0.811 0.813 0.816 0.818 0.820
1.30 0870 0.872 0.874 0.877 0.879 0.881 0.883 0.885
1.35 0918 0920 0.922 0.924 0.925 0.927 0.929 0.931
1.40 0951 0952 0954 0955 0.956 0.958 0.959 0.960
1.45 0972 0973 0974 0975 0.975 0.976 0.977 0.978
1.50 0984 0985 0.986 0.986 0.987 0.987 0.988 0.988
1.55 0992 0.992 0.992 0.993 0.993 0.994 0.994 0.994

- 1.60 0996 0.996 0.996 0.996 0.997 0.997 0.997 0.997
1.65 0998 0998 0.998 0.998 0.998 0.998 0.999 0.999
1.70 0999 0999 0.999 0.999 0.999 0.999 0.999 0.999
1.75 0.999 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.80 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.90 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
240 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000° 1.000 1.000 1.000
2.80 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
295 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 70 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)YTR| 93 94 95 96 97 98 99 100
1.00 | 0260 0260 0261 0261 0261 .0261 0261 0262
1.05 | 0379 0379 0380 0381 0382 0383 0384 0.385
.10 | 0506 0507 0509 0510 0512 0514 0515 0517
115 | 0628 0630 0633 0635 0637 0639 0641  0.643
120 | 0736 0738 0741 0743 0746 0748 0750  0.753
125 | 0.823 0825 0827 0830 0832 0834 0836 0839
130 | 0.887 0889 0891 0.893 0.895 0897  0.899 0.901
135 | 0932 0934 0935 0937 0938 0940 0941  0.942
140 | 0961 0962 0963 0964 0965 0966 0967  0.968
145 | 0979 0979 0980 0981 0982 0982 0983  0.984
150 | 0.989 0989 0990 0990 0991 0991 0991  0.992
155 | 0.994 0995 0995 0995 0995 0996 0.996  0.996
160 | 0997 0997 0998 0998 0998  0.998  0.998  0.998
165 | 0999 0999 0999 0999 0999 0999 0999  0.999
170 | 0999 0999 1.000 1.000 1.000 1.000 1.000  1.000
1.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.80 | 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
1.85 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
190 | 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000
195 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
200 | 1.000 1.000 1.000 1000 1.000 1.000 1.000  1.000
205 | 1.000 1000 1.000 1.000 1.000 1000 1.000 1.000
210 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
215 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
220 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
225 | 1.000 1.000 1.000 1.000 1.000 1.000 1000  1.000
230 | 1.000 1000 1.000 1000 1000 1.000 1.000  1.000
235 | 1000 1000 1.000 1.000 1.000 1.000 1000  1.000
240 | 1.000 1000 1000 1000 1000 1.000 1.000  1.000
245 | 1.000 1000 1.000 1000 1.000 1.000 1.000  1.000
250 | 1.000 1.000 1000 1.000 1000 1.000 1.000  1.000
255 | 1.000 1.000 1.000 1000 1000 1.000 1000  1.000
260 | 1.000 1000 1000 1000 1000 1.000 1000  1.000
265 | 1.000 1.000 1.000 1000 1000 1.000 1000  1.000
270 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
275 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
2.80 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
285 | 1.000 1000 1000 1.000 1000 1.000 1.000  1.000
290 |° 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
295 | 1.000 1000 1000 1.000 1.000 1.000 1.000  1.000
300 | 1.000 1.000 1000 1.000 1000 1.000 1.000  1.000



TABLE FOR
80 PERCENT CONFIDENCE
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 5 6 7 - 8 9 10 11 12
1.00 ]0.079 0.093 0.102 0.109 0.114 0.118 0.121 0.124
1.05 [0.092 0.108 0.119 0128 0.135 0.140  0.145  0.150
1.10  [0.105 0.124 0.138 0.148 0.157 0.165 0172  0.178
.15 {0.120 0.141 0.157 0.170 0.181  0.191 0200  0.208
1.20  |0.135 0.159 0.178  0.193 0207 0219 0230 0.240
125 ]0.151 0.178 0200 0218 0234 0248 0261 0274
1.30  |0.168 0.198 0.222 0243 0261 0278 0294  0.309
1.35  |0.185 0218 0245 0269 0290 0309 0327 0.344
1.40 0203 0239 0269 0295 0319 0341 0361  0.381
145 0221 0260 0293 0322 0348 0.373 0395 0417
1.50 0240 0282 0318 0349 0378 0405 0.429  0.453
1.55 0259 0304 0342 0377 0408 0436 0463 0488
.60 0278 0326 0367 0404 0437 0468  0.496 0523
1.65 |0297 0348 0392 0431 0466 0499 0529  0.556
1.70 {0316 0370 0417 0458 0495 0.529 0560  0.589
1.75 0336 0392 0.441 0.484 0.523 0.558 0.590-  0.620
1.80 | 0355 0414 0465 0510 0550 0.586  0.620  0.650
1.85 [ 0374 0436 0488  0.535 0576 0.614 0647 0.678
1.90 | 0393 0457 0.511 0559 0602 0.640 0.674  0.705
1.95 | 0412 0478 0.534 0583 0626 0.665 0699  0.730
200 | 0431 0498 0.556 0.606 0.650 0.688 0.723  0.753
205 | 0449 0519 0.577 0628 0672 0711  0.745  0.775
210 | 0468 0538 0.598 0.649 0694 . 0.732 0766  0.796
2.15 | 0485 0557 0.618 0669 0714 0752 0.78  0.814
220 | 0503 0576 0.637 0689 0733 0.771  0.804  0.832
225 | 0520 0594 0.656 0.708 0.751 0.789  0.821 - 0.848
230 | 0537 0612 0.674 0725 0769 0.805 0.836  0.862
235 | 0553 0629 0.691 0742 0.785 0.821  0.851  0.876
240 | 0569 0645 0.707 0.758 0.800  0.835 0.864  0.888
245 | 0585 0661 0.723 0773 0814 0.848 0.876  0.899
2,50 | 0600 0676 0.738 0.787 0.828  0.861  0.887  0.909
255 | 0614 0691 0752 0801 0.840 0872 0.898 0918
260 | 0629 0705 0.765 0814 0.852 0.883  0.907  0.926
265 | 0642 0718 0778 0826 0.863 0.892 0916 0.934
270 | 0.656 0731 0.791  0.837 0.873 0901  0.923  0.941
275 | 0669 0744 0.802 0847 0882 0910 0.931  0.947
2.80 | 0681 0756 0.813 0857 0.891 0917 0.937  0.952
285 | 0693 0767 0.824 0867 0.899 0924 0943  0.957
290 | 0705 0778 0.834 0875 0907 0931 0948  0.962
295 | 0716 0789 0.843 0884 0914 0936 0953  0.966
300 | 0727 0799 0.852 0.891 0920 0942 0.958  0.969
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 13 14 15 16 17 18 19 20
1.00 0.127 0.129 0.131 0.133  0.135 0.136 0.138 0.139
1.05 0.154 0.158 0.161 0.164 0.168 0.171 0.173 0.176
1.10 0.184 0.189 0.194 0.199 0.204 0.208 0.213 0.217
1.15 0.216 0.223  0.230 0.237 0.243 0.250 0.255 0.261
1.20 0.250 0260 0.268 0277 0.285 0.293 0.301 0.308
1.25 0.286 0.297 0.308 0319 0.329 0.339 0.348 0.357
1.30 0323 0336 0.349 0362 0.374 0.386 0.397 0.408
1.35 | 0361 0376 0.391 0406 0419 0.433 0.446 0.458
1.40 0399 0416 0.433 0.449  0.465 0.479 0.494 0.508
1.45 0.437 0456 0475 0.492 0.509 0.525 0.541 0.556
1.50 0475 0.496 0.516 0.534 0.553 0.570 0.586 0.602
1.55 0.512 0.534 0.555 0.575 0.594 0.612 0.630 0.646
1.60 0.548 0.571 0.593 0.614 0.634 0.653 0.670 0.687
1.65 0.583 0.607 0.630 0.651 0.671 0.690 0.708 0.725
1.70 0.616 0.641 0.664 0.686 0.706 0.725 0.743 0.760
1.75 0.648 0.673  0.697 0.719 0.739 0.757 0.775 0.791
1.80 0.678 0.703  0.727 0.749 0.769 0.787 0.804 0.819
1.85 0706  0.732 0.755 0.776  0.796 0.813 0.830 0.844
1.90 0.733 0.758 0.781 0.802 0.820 0.837 0.853 0.867
1.95 0.758 0.782  0.805 0.825 0.843 0.859 0.873 0.886
2.00 0.781 0805 0.826 0.845 0.863 0.878 0.891 0.903
2.05 0.802 0.825 0.846 0.864 0.880 0.895 0.907 0.918
2.10 0.821 0.844 0.864 0.881 0.896 0.909 0.921 0.931
2.15 0.839 0.861 0.880 0.896 0.910 0922 0.933 0.942

- 2.20 0.856 0876 0.894 = 0909 0.922 0.933 0.943 0.951
2.25 0.871 0.890 0.907 0921 0.933 0.943 0.952 0.959
2.30 0.884 0903 0.918 0.931 0.942 0.952 0.959 0.966
2.35 0.896 0914 0.928 0.940 0.951 0.959 0.966 0.972
2.40 0.907 0924 0.937 0.948 0.958 0.965 0.971 0.977
245 0917 0.933 0.945 0.955 0.964 0.971 0.976 0.981
2.50 0926 0941 0.952 0.961 0.969 0.975 0.980 0.984
2.55 0935 0.948 0.958 0967 0.974 0.979 0.983 0.987
2.60 0942 0954 0.964 0971 0.977 0.982 0986  0.989
265 | 0948 0.960 0.968 0.975 0.981 0.985 0.988 0.991
2.70 0954 0964 0.973 0.979  0.984 0.987 0.990 0.993
2.75 0959 0969 0.976 0.982 0.986 0.989 0.992 0.994
2.80 0964 0973 0.979 0.984 0.988 0.991 0.993 0.995
2.85 0968 ~ 0976 0.982 0.987 0.990 0.993 0.994 0.996
2.90 0972 0979 0.984 0.988 0.991 0.994 0.995 0.997
2.95 0975 0982 0.986 0.990 0.993 0.995 0.996 0.997
3.00 0978 0984 0.988 0.992 0.994 0.996 0.997 0.998
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[}

PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 21 22 23 24 25 26 27 28
1.00 0.141 0.142 0.143 0.144 0.145 0.146 0.147 0.148
1.05 0.178 0.181 0.183 0.185 0.187 0.190 0.192 0.193
1.10 0.221 0225 0.228 0.232 0.235 0.239 0.242 0.245
1.15 0267 0272 0277 0282 0.287 0.292 0.297 0.302
1.20 0316 0323 0.330 0.336 0.343 0349 0.355 0.361
1.25 0366 0.375 0.384 0.392  0.400 0.408 0.416 0.423
1.30 0.418 0429 0.439 0.448 0458 0.467 0476 0.485
1.35 0.470 0.482 0.493 0.504 0.515 0.525 0.535 0.545
1.40 0.521 0.534 0.546 0.558 0.570 0.582 0.593 0.603
1.45 0.570 0.584 0.598 0.610 0.623 0.635 0.646 0.658
1.50 0.617 0.632 0.646 0.659 0.672 0.684 0.696 0.708
1.55- | 0662 0.677 0.691 0.704 0.717 0.730 0.741 0.753
1.60 0.703 0.718 0.732 0.746  0.758 0.770 0.782 0.793
1.65 0.741 0.755 0.769 0.783  0.795 0.807 0.818 0.828
1.70 0.775 0.789 0.803 0.816 0.828 0.839 0.849 0.859
1.75 0.806 0.820 0.833 0.845 0.856 0.866 0.876 0.885
1.80 0.834 0.847 0.859 0.870 0.880 0.890 0.899 0.907
1.85 0.858 0.870 0.882 0.892  0.901 0.910 0.918 0.925
1.90 { 0879 0.891 0.901 0911 0919 0.927 0.934 0.940
1.95 0.898 0.909 0918 0926 0.934 0.941 0.947 0.953
2.00 0914 0924 0.932 0.940 0.947 0.953 0.958 0.963
2.05 0.928 0.937 0.944 0.951 0.957 0.962 0.967 0.971
2.10 0940 0.948 0.954 0.960  0.965 0.970 0.974 0.977
2.15 0950 0957 0.963 0968 0.972 0.976 0.979 0.982

2.20 0.958 0.964 0970 0974 0.978 0.981 0.984 0.986
2.25 0966 0971 00975 0.979  0.982 0.985 0.987 0.989
2.30 0972 0976 0.980 0.983  0.986 0.988 0.990 0.992
2.35 0977 0981 0.984 0.987 0.989 0.991 0.992 0.994
2.40 0981 0984 0987 0.989 0.991 0.993 0.994 0.995
2.45 0.984 0.987 0.990 0992  0.993 0.994 0.996 0.996
2.50 0987 0990 0.992 0.993  0.995 0.996 0.997 0.997
2.55 0.989 0.992 0.993 0.995 0.996 0.997 0.997 0.998
260 | 0991 0993 0.995 0.996 0.997 0.997 0.998 0.998
2.65 0993 0995 0.996 0.997 0.997 0.998 0.998 0.999
2.70 0994 0.996 0.997 0.997 0.998 0.998 0.999 0.999
2.75 0.995 = 0.996 0.997 0.998 0.998 0.999 0.999 0.999
2.80 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999
2.85 0997 0998 0.998 0999 0.999 0.999 0.999 1.000
2.90 0.997 0.998 0.999 0.999  0.999 0.999 1.000 1.000
2.95 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000
3.00 0.998 0999 0.999 0.999 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 29 30 31 32 33 34 35 36
1.00 0.149  0.149 0.150 0.151 0.151 0.152 0.153 0.153
1.05 0.195 0.197 0.199 0.201 0.202 0.204 0.206 0.207
1.10 0.248 0.251 0.254 0.257 0.260 0.263 0.266 0.269
1.15 0.306 0311 0315 0319 0.324 0.328 0.332 0.336
1.20 0.367 0.373 .0.379 0.385 0.390 0.396 0.401 0.407
1.25 0.430 0438 0.445 0.452  0.459 0.465 0.472 0.478
1.30 0.494 0502 0.510 0.518 0.526 0.534 0.542 0.549
1.35 0.555 0.564 0574 0.582  0.591 0.600 0.608 0.616
1.40 0.614 0.624 0.633 0.643 0.652 0.661 0.670 0.678
1.45 0.668 0.679 0.689 0.699 0.708 0.717 0.726 0.735
1.50 0.718 0.729 0.739 0.749 0.758 0.767 0.776 0.784
1.55 0.764 0.774 0.784 0.793  0.802 0.811 0.819 0.827
1.60 0.803 0.813 0.823 0.832 0.840 0.848 0.856 0.863
1.65 0.838 0.847 0.856 0.864 0.872 0.879 0.886 0.893
1.70 0.868 0.876 0.884 0.892 0.899 0.905 0.911 0.917
1.75 0.893 0.901 0.908 0915 0.921 0.926 0.932 0.937
1.80 0914 0921 0.927 0.933 0.938 0.943 0.948 0.952
1.85 0932 0938 0.943 0948 0.953 0.957 0.961 0.964
1.90 0946 0951 0.956 0960 0.964 0.967 0.971 0.973
1.95 0957 0962 0.966 0.969 0.973 0.976 0.978 0.980
2.00 0967 0971 0.974 0977 0.979 0.982 0.984 0.986
2.05 0974 0977 0.980 0983 0.985 0.987 0.988 0.990
2.10 0980 0983 0985 0.987 0.989 0.990 0.991 0.993
2.15 0985 0987 0.989 0990 0.992 0.993 0.994 0.995
2.20 0988 0.990 0.991 0.993 0.994 0.995 0.996 0.996
2.25 0991 0992 0.994 0.995 0.995 0.996 0.997 0.997
2.30 0.993 0994 0.995 0.996 0.997 0.997 0.998 0.998
2.35 0995 0.996 0.997 0.997  0.998 0.998 0.998 0.999
2.40 0996 0997 0.997 0.998 0.998 0.999 0.999 0.999
245 0997 0998 0.998 0.998 0.999 0.999 0.999 0.999
2.50 0.998 0.998 0.999 0.999 0.999 0.999 0.999 1.000
2.55 0998 0999 0.999 0.999 0.999 1.000 1.000 1.000
2.60 0.999 0999 0.999 0.999 1.000 1.000 1.000 1.000
2.65 0999 0999 0.999 1.000 1.000 1.000 1.000 1.000
2.70 0999 0999 1.000 1.000  1.000 1.000 1.000 1.000
2.75 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(TYTR| 37 38 39 40 41 42 43 44
100 | 0.154 0.154 0.155 0156 0.156 0157 0157  0.157
1.05 | 0209 0210 0212 0213 0214 0216 0217 0218
100 | 0271 0274 0276 0279 0281 0284 0286 0289
115 [0340 0344 0347 0351 0355 0359 0362 0.366
120 {0412 0417 0422 0427 0432 0437 0441  0.446
125 | 0485 0491 0497 0503 0509 0515 0521 0526
130 | 0556 0563 0570 0577 0584 0591 0597  0.604
135 | 0624 0632 0639 0647 0654 0661 0668  0.675
1.40 | 0687 0695 0703 0710 0718 0725 0732  0.739
145 | 0743 0751 0759 0766 0.773  0.781  0.787  0.794
1,50 | 0792 0800 0807 0814 0821 0828 0834 0841
1.55 | 0.834 0842 0.848 0855 0861 0867 0873  0.879
160 | 0870 0876 0.883 0888 0.894 0.899 0905  0.909
1.65 | 0899 0905 0910 0915 0920 0925 0929 0933
1.70 {0923 0928 0932 0937 0941 0945 0948  0.952
1.75 [0941 0946 0949 0953 0957 0960 0963  0.965
1.80 | 0956 0960 0.963 0966 0969 0971 0973  0.976
1.85 | 0967 0970 0973 0975 0977 0979 0981 0983
190 {0976 0978 0980 0982 0984 098 0987  0.988
195 | 0982 0984 098 0987 0989 0990 0991  0.992
200 | 0987 098 0990 0991 0992 0993 0994  0.995
205 {0991 0992 0993 099 0995 0995 099  0.99
210 | 0994 0994 0995 099 0996 0997 0997  0.998
215 .| 0995 0996 0997 0997 0997 0998 0998  0.998
220 | 0997 0997 0998 0998 0.998 0999 0999  0.999
225 | 0998 0998 0.998 0999 0999 0999 0999  0.999
230 | 0998 0999 0999 0999 0999 0999 0999  1.000
235 | 0999 0999 0999 0999 - 0.999 1.000  1.000  1.000
240 0999 0999 0999 1.000 1.000 1.000 . 1.000  1.000
245 0999 1.000 1.000 1000 1.000 1.000 1.000  1.000
250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
255 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
260 | 1.000 1000 1.000 1000 1.000 1.000 1.000  1.000
265 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
270 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
275 | 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000
280 | 1.000 1.000 1.000 1000 1.000 1.000 1.000  1.000
2.85 | 1.000 1000 1.000 1.000 1.000 1.000 1000  1.000
290 |1.000 1.000 1.000 1.000 1000 1.000 1000  1.000
295 |1.000 1000 1000 1.000 1000 1.000 1000 1.000
3.00 ' 1.000 1.000 1.000 1000 1.000 1.000. 1.000  1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 45 46 47 48 49 50 51 52
1.00 0.158 0.158 0.159 0.159 0.160 0.160 0.160 0.161
1.05 0.220 0.221 0.222 0.224  0.225 0.226 0.227 0.228
1.10 0291 0294 0.296 0.298 0.300 0.303 0.305 0.307
1.15 0369 0373 0.376 0.380 0.383 0.386 0.390 0.393
1.20 0.451 0.455 0.460 0.464 0.469 0.473 0.478 0.482
1.25 0.532 0.538 0.543 0.548 0.554 0.559 0.564 0.569
1.30 0.610 0.616 0.622 0.628 0.634 0.640 0.645 0.651
1.35 0.681 0.688 0.694 0.701 0.707 0.713 0.718 0.724
1.40 0.745 0.752 0.758 0.764 0.770 0.776 0.782 0.787
1.45 0.800 0.807 0.813 0.818 0.824 0.829 0.835 0.840
1.50 0.846 0.852 0.858 0.863 0.868 0.873 0.878 0.882
1.55 0.884 0.889 0.894 0.899 0.903 0.907 0.911 0.915
1.60 0914 0918 0.922 0926 0.930 0.934 0.937 0.940
1.65 0937 0941 0944 0947 0.950 0.953 0.956 0.959
1.70 0955 0.958 0.960 0963 0.965 0.968 0.970 0.972
1.75 0968 0970 0972 0974 0.976 0.978 0.980 0.981
1.80 0978 0979 0.981 0.983 0.984 0.985 0.986 0.988
1.85 0984 0986 0.987 0.988 0.989 0.990 0.991 0.992
1.90 0989 0990 0.991 0992 0.993 0.994 0.994 0.995
1.95 0993 0994 0.994 0.995 0.995 0.996 0.996 0.997
2.00 0995 099 0.996 0.997  0.997 0.997 0.998 0.998
2.05 0.997 0.997 0.998 0.998  0.998 0.998 0.999 0.999
2.10 0.998 0998 0.998 0.999 0.999 0.999 0.999 0.999
2.15 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000
2.20 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
2.25 0999 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000

1 2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

B-24



PROBABILITY OFVDEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

4
M(T)/TR 53 54 55 56 57 58 59 60
1.00 0.161 0.161 0.162 0.162 0.162 0.163 0.163 0.163
1.05 0.230 0.231 0.232 0.233 0.234 0.235 0.236 0.237
1.10 0.309 0.311 0.313 0.316 0318 0.320 0.322 0.324
1.15 0396 0.399 0.403 0.406 0.409 0.412 0.415 0.418
1.20 0.486 0.490 0.49%4 0.498 0.502 0.506 0.510 0.514
1.25 0.574 0.579 0.584  0.589 0.593 0.598 0.603 0.607
1.30 0.656 0.662 0.667 0.672 0.677 0.682 0.687 0.692
1.35 0.730 0.735 0.740 0.746  0.751 0.756 0.761 0.766
1.40 0.793 0.798 0.803 0.808 0.813 0.818 0.822 0.827
1.45 0.845 0.850 0.854 0.859 0.863 0.867 0.872 0.876
1.50 0.887 0.891  0.895 0.899  0.902 0.906 0.910 0.913
1.55 0919 0.922 0.926 0.929 0.932 0.935 0.938 0.941
1.60 0.943 0.946 0.949 0951 0954 0.956 0.958 0.961
1.65 0.961  0.963  0.965 0.967 0.969 0.971 0.973 0.974
1.70 0974 0975 0.977 0.979 0.980 0.981 0.982 0.984
1.75 0983 0984 0.985 0986 0.987 0.988 0.989 0.990
1.80 0.989 0.990 0.990 0.991 0.992 0.993 0.993 0.954
1.85 0.993 0.993 0.994 0.994 0.995 0.995 0.996 0.996
1.90 0995 0996 0.996 0997 0.997 0.997 0.998 0.998
1.95 0.997 0997 0.998 0.998  0.998 0998  0.999 0.999
2.00 0.998 0998 0.999 0.999  0.999 0.999 . 0.999 0.999
2.05 0999 0999 0.999 0999 0.999 0.999 1.000 1.000
2.10 0999 0.999 1.000 1.000  1.000 1.000 1.000 1.000
2.15 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
. 2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 1.000 1.000 -~ 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR| 61 62 63 64 65 66 67 68
1.00 | 0.163 0.164 0.164 0.164 0164 0165 0.165 ~ 0.165
1.05 | 0238 0239 0240 0241 0242 0243 0244  0.245
1.10 | 0326 0328 0330 0332 0334 0335 0337 0339
1.15 | 0421 0424 0427 0430 0433 0435 0438  0.441
120 | 0518 0522 0526 0529 0533 0537 0540  0.544
125 | 0612 0616 0620 0.625 0629 0633 0637  0.641
130 | 0697 0701 0706 0710 0715 0719 0724  0.728
135 | 0770 0775 0.779 0.784 0788 0792  0.797  0.801
140 | 0.831. 0835 0840 0844 0848 0851 0855  0.859
145 | 0.879 0.883 0.887 0.890 '0.894 0.897 0900  0.903
1.50 | 0916 0919 0922 0925 0928 0931 0933  0.936
1.55 | 0943 0946 00948 0950 0953 0955 0957  0.959
160 | 0963 0964 0966 0968 0970 0971 0973  0.974
1.65 | 0976 0977 0979 0980 0981 0982 0983  0.984
1.70 | 0985 0.98 0987 0988 0988 0989 0990  0.991
175 | 0991 0991 0992 0992 0993 0994 0994  0.994
1.80 | 0.994 0995 00995 099 099 0996 0997  0.997
1.85 | 0.997 0997 0997 0997 0998 0998 0998  0.998
1.90 | 0998 00998 00998 0999 0999 0999 0999  0.999
195 | 0999 0999 0999 0999 0999 0999 0999  0.999
200 | 0999 0999 0999 1.000 1000 1.000 1.000  1.000
205 | 1.000 1.000 1.000 1000 1.000 1.000 1.000  1.000
210 | 1.000 1.000 1.000 1000 1.000 1.000 1.000  1.000
2.15 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
220 | 1.000 1.000 1.000 1000 1000 1.000 1.000  1.000
225 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
230 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
235 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
240 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
245 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
2.50 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
255 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
260 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
265 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
270 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
275 | 1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
280 | 1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
285 | 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000
290 [-1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
295 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
3.00 | 1.000 1.000 1.000 1.000 1.000 1000 1000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(TYTR| 69 70 71 72 73 74 75 76
100 | 0165 0.166 0.166 0.166 0.166 0167 0.167 0.167
105 | 0246 0247 0248 0249 0250 0251 0252  0.253
110 | 0341 0343 0345 0347 0348 0350 0352  0.354
1.15 | 0444 0447 0449 0452 0455 0457 0460  0.463
120 | 0.548 0551 0555 0558 0561 0565 0568 0571
125 | 0.645 0649 0653 0657 0661 0665 0.668 0672
130 | 0.732 0736 0740 0744 0748 0752 0756  0.759
135 | 0.805 0809 0812 0816 0820 0823 0827 0.830
140 | 0.862 0866 0869 0873 0876 0879 0882  0.885
145 | 0906 0909 0912 0915 0917 0920 0923  0.925
150 | 0.938 0940 0943 0945 0947 0949 0951  0.953
155 | 0960 0962 0964 0965 0967 0968 0970 0971
160 | 0975 0977 0978 0979 0980 00981 0982  0.983
165 | 0985 098 0987 0988 0988 0989  0.990  0.990
1.70 | 0.991 0992 0992 0993 0993 0994  0.994  0.995
1.75 0.995 0.995 0.996 0.996 0.996 0.997 0.997 0.997
1.80 | 0.997 0997 0998 0998 0.998 0998 0998  0.998
185 | 0998 0999 0999 0999  0.999 0999  0.999  0.999
190 | 0999 0999 0999 0999 0999 0999  1.000  1.000
195 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
200 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
205 | 1.000 1000 1000 1000 1.000 1.000 1.000  1.000
210 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
215 | 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
220 { 1.000 1.000 1.000 1.000 1.000 1000 1.000  1.000
225 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
230 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
235 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
240 | 1.000 1000 1.000 1.000 1.000 1.000 1.000  1.000
245 | 1.000 1000 1.000 1.000 1.000 1000 1.000  1.000
250 | 1.000 1000 1.000 1.000 1.000 1000 1.000  1.000
255 | 1.000 1000 1000 1.000 1.000 1000 1.000  1.000
260 | 1.000 1000 1.000 1.000 1.000 1.000 1000  1.000
265 | 1.000 1.000 1.000 1000 1.000 1.000 1.000  1.000
270 | 1.000 1000 1000 1.000 1.000 1000 1.000  1.000
275 | 1.000 1000 1000 1.000 1.000 1000  1.000  1.000
280 | 1.000 1.000 1.000 1.000 1.000 1.000 1000  1.000
285 | 1.000 1.000 1.000 1.000 1.000 1.000 1000  1.000
290 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
295 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
300 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 77 78 79 80 81 82 83 84
1.00 0.167 0.167 0.168 0.168 0.168 0.168 0.168 0.169
1.05 0.254 0.254 0.255 0.256  0.257 0.258 0.259 0.260
1.10 0355 - 0357 0.359 0.361 0.362 0.364 0.366 0.367
1.15 0.465 0468 0471 0473 0.476 0.478 0.481 0.483
1.20 0575 0578 0.581 0.584 0.588 0.591 0.594 0.597
1.25 0.676  0.679  0.683 0.687  0.690 0.693 0.697 0.700

. 1.30 0.763 0767 0.770  0.774 0.777 0.781 0.784 0.787
1.35 0.834 0.837 0.840 0.844 0.847 0.850 0.853 0.856
1.40 0.888 0.891 0.894 0.896  0.899 0.901 0.904  '0.906
1.45 0927 0930 0932 0934 0.936 0.938 0.940 0.942
1.50 0954 0956 0.958 0.959 0.961 0.962 0.964 0.965
1.55 0972 0974 0975 0976  0.977 0978  0.979 0.980
1.60 0984 0985 0.985 0.986 0.987 0.988 0.988 0.989
1.65 0991 0991 0.992 0992 0.993 0.993 0.994 0.994
1.70 0995 0.995 0.996 0.996 0.996 0.996 0.997 0.997
1.75 0.997 0.997 0.998 0.998 0.998 0.998 0.998 0.998
1.80 0999 0999 0.999 0999 0.999 0.999 0.999 0.999
1.85 0.999 0999 0.999 0.999 0.999 1.000 1.000 1.000
1.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.10 1.000. 1.000 1.000 1.060 1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 ~ 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000  1.000 1.000 1.000 1.000 -1.000 1.000 1.000
2.35 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 85 86 87 88 89 90 91 92
1.00 0.169 0.169 0.169 0.169 0.169 0.170 0.170 0.170
1.05 0.260 0.261 0.262 0.263 0.264 0.265 0.265 0.266
1.10 0369 0371 0372 0374 0.376 0.377 0.379 0.380
1.15 0.486 0.488 0491 0.493  0.495 0.498 0.500 0.502
1.20 0.600 0.603 0.606 0609 0.612 0.615 0.618 0.621
1.25 0.704 0707 0710 0713 0.716 0.720 0.723 0.726
1.30 0.790 0.794 0.797 0.800 0.803 0.806 0.809 0.812
1.35 0.859 0.861 0.864 0.867 0.870 0.872 0.875 0.877
1.40 0.909 0911 0913 0916 0918 0.920 0.922 0.924
1.45 0944 0945 0947 0949 0.950 0.952 0.953 0.955
1.50 0966 0.968 0.969 0970 0.971 0.972 0.973 0.974
1.55 0981 0982 0.982 0983 0.984 0.985 0.985 0.986
1.60 0989 0990 0990 0991 0.991 0.992 0.992 0.993
1.65 0994 0995 0.995 0.995 0.996 0.996 0.996 0.996
1.70 0.997 0997 0.997 0.998 0.998 0.998  0.998 0.998
1.75 0999 = 0999 0.999 0.999 0.999 0.999 0.999 0.999
1.80 0.999 0999 0.999 0.999  0.999 1.000 1.000 1.000
1.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000. 1.000 1.000 1.000 1.000  1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.006  1.000 1.000 1.060 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 80 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 93 94 95 96 97 98 99 100
1.00 0.170 0.170 0.170  0.170  0.171 0.171 0.171 0.171
1.05 0.267 0.268 0.269 0.269 0.270 0.271 0.272 0.272
1.10 0.382 0.384 0.385 0.387 0.388 0.390 0.391 0.393
1.15 0.505 0.507 0.509 0512 0514 0.516 0.519 0.521
1.20 0.624 0.626 0.629 0.632 0.635 0.638  0.640 0.643
1.25 0.729 0.732  0.735 0.738 0.741 0.743 0.746 0.749
1.30 0.815 0.818 0.820 0.823 0.826 0.828 0.831 0.834
1.35 0.880 0.882 0.885 0.887  0.889 0.891 0.893 0.896
1.40 0926 0928 0.929 0931 0.933 0.935 0.936 0.938
1.45 0956 0.958 0.959 0.960 0.961 0.963 0.964 0.965
1.50 0975 0976 0.977 0978 0.979 0.980 0.980 0.981
1.55 0.987 0987 0.988 0.988 0.989 0.989 0.990 0.990
1.60 0993 0993 0.99% 0994 0.994 0.995 0.995 0.995
1.65 0.997 0.997 0.997 0.997 0.997 0.997 0.998 0.998
1.70 0998 0998 0.999 0.999 0.999 0.999 0.999  0.999
1.75 0999 0999 0.999 0999 0.999 0.999 1.000 1.000
1.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.10 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 ° 1.000 1.000 1.000 1.000 1.000
225 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
245 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000-  1.000
2.65 | 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 ~ 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT

WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)Y/ TR 5 6 7 8 9 10 11 12
1.00 0.036  0.044 0.049 0.053 0.055 0.057 0.059 0.060
1.05 0.043 0.052 0.059 0.064 0.067 0.071 0.073 0.076
1.10 0.050 0.062 0.070 0.076  0.081 0.085 0.089 0.093
1.15 0.059 0.072 0.082 0.089  0.096 0.102 0.107 0.112
1.20 0.068 0.083 -0.095 0.104 0.113 0.120 0.127 0.134
1.25 0.078 0.095 0.109 0.120 0.130 0.140 0.149 0.157
1.30 0.088 0.108 0.124 0.137 0.150 0.161 0.172 0.182
1.35 0.099 0.121 0.140 0.156. 0.170 0.184 0.197 0.209
1.40 0.111  0.136 0.156 0.175 0.192 0.208 0.223 0.238
1.45 0.124 0.151 0.174 0.195 0.214 0.233 0.250 0.267
1.50 0.136 0.166 0.192 0.216 0.238 0.258 0.278 0.298
1.55 0.150 0.183 0.211 0.237  0.262 0.285 0.307 0.329
1.60 0.164 0.199 0.231 0.260  0.287 0312 -0.337 0.361
1.65 0.178 0217 0.251 0.282 0.312 0.340 0.367 0.393
1.70 0.193 0234 0.271 0.305 0.337 0.368 0.397 0.425
1.75 0.208 0.252 0.292 0.329 0.363 0.396 0.427 0.456
1.80 0.223 0270 0.313 0.352 0.389 0.424 0.457 0.488
1.85 0.238 0.289 0.334 0376 0.415 0.451 0.486 0.518
1.90 0.254 0307 0.355 0.399 0.440 0.479 0.515 0.548
1.95 0.270  0.326 0.376 0.423  0.465 0.505 0.543 0.578
2.00 0.286 0345 0.398 0.446  0.490 0.532 0.570 0.606
2.05 0302 0364 0.419 0.469 0.515 0.557 0.596 0.633
2.10 0318 0382 0.439 0.491 0.539 0.582 0.622 0.658
2.15 0334 0.401 0.460 0.513 0.562 0.606 0.646 0.683
2.20 0.351 0.419 0.480 0.535 0.585 0.629 0.670 0.706
2.25 0.367 0.437 0.500 0.556 0.606 0.652 0.692 0.729

230 0.383 0.456 0.520 0.577 0.628 0.673 0.714 0.749
2.35 0399 0473 0.539 0.597 . 0.648 0.694 0.734 0.769
2.40 0.415 0491 0.557 0.616 0.668 0.713 0.753 0.787
2.45 0.430 0.508 0.576 0.635 0.686 0.732 0.771 0.805
2.50 0.446 0.525 0.593 0.653 0.705 0.749 0.788 0.821
2.55 0.461 0.541 0.611 0.670  0.722 0.766 0.803 0.835
2.60 0.476 0.558 0.627 0.687 0.738 0.782 0.818 0.849
2.65 0.491 0573 0.644 0.703 0.754 0.796 0.832 0.862
2.70 0.505 0.589 0.659 0.719  0.769 0.810 0.845 0.874
2.75 0.520 0.604 0.674 0.733  0.783 0.824 0.857 0.885
2.80 0.534 0.618 0.689 0.748 0.796 0.836 0.868 0.895
2.85 0.547 0.633 0.703 0.761  0.809 0.847 0.879 0.904
2.90 0.561 0.646 0.717 0.774 0.821 0.858 0.889 0.913
295 0.574 0.660 0.730 0.786  0.832 0.868 0.897 0.920
3.00 0.587 0.673 0.742 0.798  0.842 0.878 0.906 0.927
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE.

EXPECTED NUMBER OF FAILURES

M(T)TR| 13 14 15 16 17 18 19 20
100 | 0062 0063 0064 0065 0066 0066 0067  0.068
1.05 | 0078 0080 0082 0083 0.08 0087 0.088  0.090
.10 | 0096 0099 0.102 0.105 0.108 0.111 0113 0.116
1S | 0117 0121 0126 0130 0.134 0.138 0142  0.146

120 | 0.140 0.146 0.152 0158 0.164 0169 0.174  0.180
125 | 0165 0173 0.181 0188 019 0203 0210 0217
130 | 0.192 0202 0212 0221 0230 0239 0248 0257
135 | 0221 0233 0245 0256 0267 0278 0289  0.300
1.40 | 0252 0266 0280 0293 0306 0319 0331 0344
145 | 0284 0300 0316 0331 0346 0361 0375 0389
1.50 | 0317 0335 0353 0370 0387 0403 0419 0435
1.55 | 0350 0370 0390 0409 0428 0446 0463  0.480
1.60 | 0384 0406 0427 0448 0468 0488  0.507  0.525
1.65 | 0418 0442 0465 0487 0508 0529 0549  0.568
1.70 | 0451 0477 0502 0525 0548 0569 0590  0.610
1.75 | 0485 0512 0537 0562 0585 0.608 0629  0.649
1.80 | 0517 0546 0572 0598 0622 0644 0.666  0.686
1.85 | 0.549 0578 0.606 0.632 0.656 0.679 0701  0.721
190 | 0580 0610 0638 0664 0.68 0711 0733  0.753
195 | 0.610 0640 0.669 0695 0719 0742 0763  0.782
200 | 0639 0669 0.697 0723 0747 0770 0790  0.809
205 | 0666 069 0725 0750 0.774  0.795  0.815  0.833
210 | 0692 0722 0750 0775 0.798 0819 0837  0.854
215 | 0716 0746 0773 0798 0.820 0.840  0.858  0.873
220 | 0739 0769 0795 0819 0840 0859 0876  0.891
225 | 0761 0.790 0.816 0838 0.858 0876 0.892  0.906
230 | 0781 0.809 0.834 0856 0.875 0.892 0906 0.919
235 | 0800 0827 0851 0872 - 0.890 0905 0919  0.930
240 | 0818 0844 0866 088 0903 0917 0930  0.940
245 | 0.834 0859 0.881 0.899 0915 0928 0940  0.949
250 | 0.849 0873 0.893 0911 0925 0938 0948  0.957
255 | 0.863 088 0905 0921 0935 0946 0955  0.963
260 | 0.875 0897 0915 0930 0943 0953 0962  0.969
265 | 0.887 0908 0925 0939 0950 0960 0967 0974
270 | 0.898 0917 0933 0946 0957 0965 0972  0.978
275 | 0907 0926 0941 0953 0962 0970 0976  0.981
280 { 0916 0934 0947 0958 0967 0974 0980  0.984
285 | 0924 0941 0953 0964 0972 0978 0983  0.987
290 | 0932 0947 0959 0968 0975 0981 0985  0.989
295 | 0938 0952 0963 0972 0979 0984 0988  0.991
3.00 | 0944 0958 0968 0975 0981 098 0989  0.992
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

B-34

EXPECTED NUMBER OF FAILURES
M(T)/TR 21 22 23 24 25 26 27 28
1.00 0.068 0.069 0.070 0.070  0.071 0.071 0.072 0.072
1.05 0.091 0.093 0.094 0.095 0.096 0.098 0.099 0.100
1.10 0.118 0.121 0.123 0.125 0.127 0.130 0.132 0.134
1.15 0.150 0.153 0.157 0.160 0.164 0.167 0.170 0.174
1.20 0.185 0.190 0.195 0.200 0.205 0.209 0.214 0.219
1.25 0.224 0.230 0.237 0.243  0.250 0.256 0.262 0.269
1.30 0266 0.274 0.282 0.290 0.298 0.306 0314 0.322
1.35 0.310 0320 0.330 0.340 0.349 0.359 0.368 0.378
1.40 0356 0368 0.379 0.391  0.402 0413 0.424 0.434
1.45 0.403 0.416 0.429 0.442 0.455 0.467 0.479 0.491
1.50 0.450 0.465 0479 0.494 0.507 0.521 0.534 0.547
1.55 0.497 0.513  0.528 0.544  0.558 0.573 0.587 0.600
1.60 0.542 0.560 0.576 0.592  0.607 0.622 0.637 0.650
1.65 0.587 0.604 0.621 0.638 0.654 0.669 0.683 0.697
1.70 0.629 0.647 0.664 0.681 0.697 0.712 0.726 0.740
1.75 0.668 0.687 0.704 0.721 0.736 0.751 0.765 0.779
1.80 0.706 0.724 0.741 0.757 0.772 0.787 0.800 0.813
1.85 0.740 0.758 0.774 0.790  0.805 0.818 0.831 0.843
1.90 0.771  0.789  0.805 0.820 0.833 0.846 0.858 0.869
1.95 0.800 0.816 0.832 0.846 . 0.859 0.871 0.882 0.892
2.00 0.826 0.841 0.856 0.869 0.881 0.892 0.902 0.911
2.05 0849 0864 0877 0.889 0.900 0.910 0.919 0.927
2.10 0.869 0.883 0.896 0.907 0.917 0.926 0.934 0.941
2.15 0.888 0900 0912 0922 0931 0.939 0.946 0.952
2.20 0904 0915 0.926 0.935 0.943 0.950 0.956 0.962
2.25 0918 0928 0.938 0946 0.953 0.959 0.965 0.969
. 2.30 0930 0940 0.948 0.955 0.961 0.967 0.972 0.976
2.35 0.940 0949 0957 0.963 0.968 0.973 0.977 0.981
2.40 0950 0957 0.964 0970 0974 0.978 - 0.982 0.985
2.45 0957 0964 0970 0975 0.979 0.983 0.985 0.988
2.50 0964 0970 0975 0.980 0.983 0.986 0.988 0.990
2.55 0970 0.975 0.980 0.983 0.986 0.989 0.991 0.993
2.60 0975 0979 0.983 0986 0.989 0.991 0.993 0.994
2.65 0979 0.983 0.986 0.989 0.991 0.993 0.994 0.995
2.70 0982 0986 0.989 0991 0.993 0.994 0.996 0.996
2.75 0.985 0.988 0.991 0993  0.994 0.996 0.996 0.997
2.80 0988 0990 0.992 0994 0.995 0.996 0.997 0.998
2.85 0.990 0.992 0.99%4 0.995 0.996 0.997 0.998 0.998
2.90 0991 0993 0.995 0.996 0.997 0.998 0.998 0.999
2.95 0993 0.995 0.996 0.997 0.998 0.998 0.999 0.999
3.00 0994 0996 0.997 0.998  0.998 0.999 0.999 0.999



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

B-35

M(TYTR 29 30 31 32 33 34 35 36
1.00 0.072 0.073 0.073 0.074 0.074 0.074 0.075 0.075
1.05 0.101  0.102 0.103 0.104 0.105 0.106 0.107 0.108
1.10 0.136 0.138 0.140 0.142 0.144 0.146 0.147 0.149
1.15 0.177 0.180 0.183 0.186  0.189 0.192 0.195 0.198
1.20 - | 0223 0.228 0.232 0.237 0.241 0.246 0.250 0.254
1.25 0.275 0281 0.287 0.292 0.298 0.304 0.310 0.315
1.30 0.329 0337 0.344 0.352 0.359 0.366 0.373 0.380
1.35 0.387 0396 0.404 0413 0422 0.430 0.439 0.447
1.40 0.445 0.455 0.465 0.475 0.485 0.495 0.504 0.513
1.45 0503 0.514 0.525 0.536  0.547 0.557 0.568 0.578
1.50. 0.559 0571 0.583 0.595 0.606 0.617 0.628 0.638
1.55 0.613 0.626 0.638 0.650  0.662 0.673 0.684 0.695
1.60 0.664 0.677 0.689 0.701  0.713 0.724 0.735 0.745
1.65 0.711  0.723 0.736 0.748  0.759 0.770 0.780 0.790
1.70 0.753 0.766 0.778 0.789  0.800 0.810 0.820 0.829
1.75 0.791 0.803 0.815 0.825 0.835 0.845 0.854 0.863
1.80 0.825 0.836 0.847 0.857 0.866 0.875 0.883 0.891
1.85° | 0.854 0.865 0.8374 0.883 0.892 0.900 0.907 0914
1.90 0.880 0.889 0.898 0906 0913 0.920 0.927 0.933
1.95 0901 0910 00918 0.925 0.931 0.937 0.943 0.948
2.00 0919 0927 0934 0.940 0.946 0.951 0.956 0.960
2.05 0935 0941 0.947 0953 0.958 0.962 0.966 0.970
2.10 0.947 0953 00958 0.963  0.967 0.971 0.974 0.977
2.15 0.958 0963 0.967 0971 0975 0.978 0.980 0.983
2.20 0967 0971 0974 0.978 0.981 0.983 0.985 0.987
2.25 0973 0977 0.980 0.983 0.985 0.987 0.989 0,991

. 2.30 0979 0982 0.985 0.987 0.989 0.990 0.992 0.993
2.35 0984 0986 0.988 0.990 0.992 0.993 0.994 0.995
2.40 0.987 0.989 0.991 0.992  0.994 0.995 0.996 0.996
245 0990 0992 0.993 0.994 0.995 0.996 0.997 0.997
2.50 0992 0.994 0.995 0.996 0.996 0.997 0.998 0.998
255 ] 0994 0995 0.996 0.997  0.997 0.998 0.998 0.999
2.60 0995 099 0.997 0.998 0.998 0.998 0.999 0.999
2.65 0996 0.997 0.998 0.998 0.999 0.999 0.999 0.999
2.70 0.997 0998 0.998 0.999  0.999 0.999 0.999 0.999
2.75 0.998 0998 0.999 0999 0.999 0.999 1.000 1.000
2.80 0.998 0.999  0.999 0.999  0.999 1.000 1.000 1.000
2.85 0999 0999 0.999 0.999 1.000 1.000 1.000 1.000
2.90 0999 0999 0.999 1.000 1.000 1.000 1.000 1.000
2.95 0999 0.999 1.000 1.000  1.000 1.000 1.000 1.000
3.00 0999 1.000 1.000 1.000  1.000 1.000 1.000 1.000



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 37 38 39 40 41 42 43 44
1.00 0.075 0.075 0.076 0.076  0.076 0.077 0.077 0.077
1.05 0.109 0.110 0.111 0.112 0.113 0.113 0.114 0.115
1.10 0.151  0.153  0.155 0.156 0.158 0.160 0.162 0.163
1.15 0.201 0.204 0.207 0.210 0.213 0.215 0.218 0.221
1.20 0.258 0.262 0.267 0271t 0.275 0.279 0.283 0.287
1.25 0.321 0326 0.332 0.337 0.343 0.348 0.353 0.358
1.30 0.387 0.394 0.401 0.407 0.414 0.421 0.427 0.433
1.35 0.455 0463 0471 0479 0.486 0.494 0.501 0.509
1.40 0.522 0.531 0.540 0.549  0.557 0.566 0.574 0.582
1.45 0.587 0.597 0.606 0.616 0.625 0.633 0.642 0.651
1.50 0.649 0.659 0.668 0.678  0.687 0.696 0.705 0.713
1.55 0.705 0.715 0.724 0.734 0.743 0.752 0.760 0.768

1.60 0.755 0.765 0.774 0.783  0.792 0.800 0.808 0.816
1.65 0.800 0.809 0.818 0.826 0.834 0.842 0.849 0.856
1.70 0.838 0.847 0.855 0.862 0.870 0.877 0.883 0.889
1.75 0.871 0.878 0.886 0.892 0.899 0.905 0.911 0.916
1.80 0.898 0.905 0911 0917 0.923 0.928  0.933 0.937
1.85 0920 0926 0.932 0.937  0.941 0.946 0.950 0.954
1.90 0938 0.943 0.948 0952  0.956 0.960 0.963 0.966
1.95 0953 0957 0.961 0.964 0.967 0970 . 0.973 0.976
2.00 0964 0967 0.971 0974 0976 0.978 0.981 0.983
2.05 0973 0976 0978 0.981 0.983 0.984 0.986 0.988
2.10 0.980 0.982 0.984 0.986 0.987 0.989 0.990 0.991
2.15 0985 0.987 0.988 0990 0.991 0.992 0.993 0.994
2.20 0989 0990 0.992 0.993  0.994 0.994 0.995 0.996
2.25 0992 0993 0.994 0995 0.996 0.996 0.997 0.997
2.30 0994 0995 0.996 0.996 0.997 0.997 0.998 0.998
2.35 0.996 0.996 0.997 0.997 0.998 0.998 0.998 0.999
240 0997 0.997 0.998 0.998 0.998 0.999 0.999 0.999
2.45 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999
2.50 0998 0999 0.999 0.999 0.999 0.999 1.000 1.000
2.55 0999 0999 0.999 0.999 1.000 1.000 1.000 1.000
2.60 0.999 0.999 0.999 1.000  1.000 1.000 1.000 1.000
2.65 0.999 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
285 | 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)Y/TR 45 46 47 48 49 50 51 52
1.00 0.077 0.077 0.078 0.078 0.078 0.078 0.078 0.079
1.05 0.116 0.117 0.117  0.115 0.119 0.120 0.121 0.121
1.10 0.165 0.167 0.168 0.170  0.171 0.173 0.175 0.176
1.15 0.224 0226 0.229 0.232 0.234 0.237 0.240 0.242
1.20 0291 0295 0.298 0.302 0.306 0.310 0.314 0317
1.25 0364 0369 0.374 0379 0.384 0.389 0.394 0.399
1.30 0.440 0446 0.452 0458 0.464 0.470 0.476 0.482
1.35 0.516 0.523 0.530 0.537 0.544 0.551 0.558 0.564
1.40 0.590 0.598  0.605 0.613 -0.620 0.627 0.635 0.642
1.45 0.659 0.667 0.675 0.683  0.690 0.698 0.705 0.712
1.50 0.721 0.729 0.737 0.745 0.752 0.759 0.767 0.773
1.55 0.776  0.784  0.792 0.799  0.806 0.813 0.819 0.825
1.60 0.824 0.831 0.838 0.844  0.851 0.857 0.863 0.868
1.65 0.863 0.870 0.876 0.882 0.887 0.892 0.898 0.902
1.70 0.895 0901 0.906 0911 00916 0.921 0.925 0.929
1.75 0921 0926 0.931 0.935 0.939 0.943 0.946 0.949
1.80 0941 0945 0949 0953 0.956 0.959 0.962 0.964
1.85 0.957 0960 0.963 0.966 0.969 0.971 0.973 0.975
1.90 0969 0972 0974 0976 0.978 0.980 0.982 0.983
1.95 0978 0.980 0.982 0.983  0.985 0.986 0.988 0.989
2.00 0984 0986 0.987 0.989 0.990 0.991 0.992 0.993
2.05 0989 0995 0.991 0992  0.993 0.994 0.994 0.995
2.10 0.992 0993 0.994 0.995 0.995 0.996 0.996 0.997
2.15 0995 0995 0.996 099 0.997 0.997 0.998 0.998
2.20 0996 0997 0.997 0.998 0.998 0.998 0.998 0.999
2.25 0998 0998 0.998 0.998  0.999 0.999 0.999 0.999
2.30 0998 0.999 0.999 0.999  0.999 0.999 0.999 0.999
2.35 0999 0.999 0.999 0.999 0.999 1.000 1.000 1.000
2.40 0999 0999 0.999 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.70 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
285 |. 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000- 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 - 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 53 54 55 56 57 58 59 60
1.00 0.079 0.079 0.079 0.079  0.079 0.080 0.080 0.080
1.05 0.122  0.123  0.123 0.124  0.125 0.126 0.126 0.127
1.10 0.178 0.179 0.181 0.182 0.184 0.185 0.187 0.188
1.15 0.245 0247 0.250 0.252  0.255 0.257 0.260 0.262
1.20 0321 0325 0.328 0.332 0.336 0.339 0.343 0.346
1.25 0.404 0.408 0413 0418 0.422 0.427 0.432 0.436
1.30 0488 0.494 0499 0.505 0.511 0.516 0.522 0.527
1.35 0.571 0577 0584  0.590 0.596 0.602 0.608 0.614
1.40 0.649 0.655 0.662 0.669 0.675 0.681 0.687 0.654
1.45 0.719 0726 0.732 0.739  0.745 0.751 0.757 0.763
1.50 0.780 0.786 0.793 0.799  0.805 0.811 0.816 0.822
1.55 0.832 0.838 0.843 0.849 0.854 0.859.  0.8364 0.869
1.60 0.874 0.879 0.884 0.889 0.893 0.898 0.902 0.906
1.65 0.907 0912 00916 0920 0.924 0.927 0.931 0.934
1.70 0933 0937 0940 0943 0947 0.950 0.952 0.955
1.75 0953 0955 0958 0.961 0.963 0.966 0.968 0.970
1.80 0.967 0969 0.971 0973 0.975 0.977 0.979 0.980
1.85 0977 0979 0981 0982 0984 0.985 0.986 0.987
1.90 0985 0986 0.987 0988 0.989 0.990 0.991 0.992
1.95 0990 0.991 0.992 0992 0.993 0.994 0.994 0.995
2.00 0993 0994 0.995 0995 0.996 0.996 0.996 0.997
2.05 0996 0.996 0.997 0.997 0.997 0.998 0.998 0.998
2.10 0.997. 0998 0.998 0.998 0.998 0.999 0.999 0.999
2.15 0998 0.998 0.999 0999 0999  0.999 0.999 0.999
2.20 0.999 0.999 0.999 0.999  0.999 0.999 1.000 1.000
2.25 0999 0999 0.999 1.000 1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000- 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/ TR 61 62 63 64 65 66 67 68
1.00 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.081
1.05 0.128 0.128 0.129 0.130 0.130 0.131 0.131 0.132
1.10 0.190 0.191 0.192 0.194 0.195 0.197 0.198 0.200
1.15 0.265 0267 0.270 0272 0.274 0.277 0.279 0.281
1.20 0350 0353 0.357 0.360 0.364 0.367 0.371 0.374
1.25 0.441 0445 0450 0.454 0.459 0.463 0.467 0.472
1.30 0.532 0.538 0.543 0.548  0.553 0.558 0.563 0.568
1.35 0.620 0.626 0.631 0.637 0.642 0.648 0.653 0.659
1.40 0.700  0.705 0.711 0.717  0.722 0.728 0.733 0.739
1.45 0.769 0.775 0.780 0.786  0.791 0.796 0.801 0.806
1.50 0.827 0.832 0.837 0.842 0.847 0.852 0.856 0.860
1.55 0.874 0.878 0.883 0.887 0.891 0.895. 0.899 0.902
1.60 0910 0914 0918 0921 0.924 0.928 0.931 0.934
1.65 0938 0.941 0.944 0.946  0.949 0.951 0.954 0.956
1.70 0958 0.960 0.962 0.964 0.966 0.968 0.970 0.972
1.75 0972 0974 0975 0977 0978 0.980 0.981 0.982
1.80 0982 0983 0.984 0.985 0.986 0.987 0.988 0.989
1.85 0988 0.989 0.990 0991 0.991 0.992 0.993 0.993
1.90 0993 0993 0.994 0994 0.995 0.995 0.996 0.996
1.95 0995 0996 0.996 0997 0.997 0.997 0.997 0.998
2.00 0.997 0.997 0.998 0.998  0.998 0.998 0.999 0.999
2.05 0998 0998 0.999 0.999 0.999 0.999 0.999 0.999
2.10 0.999. 0.999 0.999 0.999 0.999 0.999 1.000 1.000
2.15 0999 0.999 1.000 1.000 1.000  1.000 1.000 1.000
220 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 -1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 ~ 1.000  1.000 1.000  1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

"2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000  1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(TYTR| 69 70 71 72 73 74 75 76
1.00 | 0081 0081 0081 0082 0082 0082 0082  0.082
105 |0.133 0133 0134 0135 0135 0.136 0.136  0.137
.10 | 0201 0202 0204 0205 0206 0208 0209 0210
115 | 0284 028 028 0291 0293 0295 0298  0.300
120 | 0377 0381 0384 0387 0391 039 0397  0.400
125 | 0476 0480 0484 0488 0493 0497 0501  0.505
130 | 0573 0578 0583 0588 0592 0597 0.602  0.606
135 | 0.664 0669 0674 0679 0684 0689  0.694  0.698
140 | 0744 0749 0754 0759 0763 0768 0773  0.777
145 [ 0811 0816 0820 0825 0829 0833 0837  0.842
1.50 | 0.865 0.869 0.873 0877 0.880 0884  0.888  0.891
1.55 | 0906 0909 0913 0916 0919 0922 0925 0928
1.60 | 0937 0939 0942 0944 0947 0949 0951  0.953
165 | 0958 0960 0962 0964 0966 0968 0969  0.971
1,70 | 0973 0975 0976 0978 0979 0980 0981  0.982
175 | 0983 0984 0985 098 0987 0988 0989  0.990
1.80 | 0990 0991 0991 0992 0992 0993 0993  0.994
1.85 | 0994 0994 0995 0995 0996 099 0996  0.997
190 |0996 0997 0997 0997 0998 0998  0.998  0.998
1.95 | 0.998 0998 0998 0998 0999 0999 0999  0.999
200 |0999 0999 0999 0999 0999 0999 0999  0.999
205 0999 0999 0999 1.000 1.000 1000 1.000  1.000
210 |1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
2.15 |1.000 1.000 1.000 1.000 1.000 1000 1000 1.000
220 | 1000 1.000 1000 . 1.000 1.000 1.000 1.000  1.000
225 |1.000 1.000 1.000 1.000 1.000 1000 1000  1.000
230 | 1.000 1.000 1000 1.000 1.000 1.000 1.000  1.000
2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
240 [1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
245 | 1.000 1.000 1000 1.000 1.000 1.000 1.000  1.000
250 |1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
255 | 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
260 | 1000 1.000 1000 1.000 1.000 1.000  1.000 - 1.000
265 | 1.000 1.000 1000 1.000 1.000 1.000 1.000  1.000
270 |1.000 1.000 1000 1.000 1.000 1.000  1.000  1.000
275 | 1.000 1.000 1.000 1.000 1000 1.000 1.000  1.000
280 |[1.000 1.000 1000 1.000 1.000 1.000 1.000  1.000
285 | 1.000 1000 1.000 1.000 1000 1.000 1.000  1.000
290 | 1000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
295 |1.000 1.000 1000 1.000 1.000 1.000 1.000  1.000
300 !1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 77 78 79 80 81 82 83 84
1.00 0.082 0.082 0.082 0.082  0.082 0.083 0.083 0.083
1.05 0.138  0.138 0.139 0.139  0.140 0.141 0.141 0.142
1.10 0.212 0213 0.214 0.216 0.217 0.218 0.220 0.221
1.15 0.302 0304 0.307 0.309 0.311 0.313 0.316 0.318
1.20 0.404 0407 0.410 0.413 0416 0.419 0.422 0.426
1.25 0.509 0513 0.517 0.521  0.525 0.528 0.532 0.536
1.30 0.611 0.615 0.620 0.624 0.628 0.633 0.637 0.641
1.35 0.703 0.708 0.712 0.717 0.721 0.725 0.730 0.734
1.40 0.782 0.786  0.790 0.795 0.799 0.803 0.807 0.811
1.45 0.845 0.849 0.853 0.857 0.860 0.864 0.867 0.871
1.50 0.894 0.898 0.901 0.904 0.907 0.910 0.913 0.915
1.55 0930 0933 0935 0.938  0.940 0.942 0.944 0.946
1.60 0.955 0957 0959 0.961 0.963 0.964 0.966 0.967
1.65 0972 0974 0975 0976 0.977 0.979 0.980 0.981
1.70 0983 0984 0.985 0986 0.987 0.988 0.988 0.989
1.75 0990 0991 0.991 0992 0.993 0.993 0.993 0.994
1.80 0994 0995 0.995 0.996 0.996 0.996 0.996 0.997
1.85 0997 0997 0.997 0.998  0.998 0.998 0.998 0.998
1.90 0998 0.998 0.999 0.999  0.999 0.999 0.999 0.999
1.95 0999 0999 0.999 0.999 0.999 0.999 0.999 1.000
2.00 0.999 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
.2.20 1.000  1.000 1.000  1.000 1.000 1.000 1.000 1.000
225 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.40 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2,65 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 * 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.95 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000
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PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 85 86 87 88 89 90 91 92
1.00 0.083 0.083 0.083 0.083  0.083 0.083 0.083 0.083
1.05 0.142 0.143 0.143 0.144 0.144 0.145 0.146 0.146
1.10 |0.222 0.224 0225 0226 0.227 0.229 0.230 0.231
1.15 ] 0320 0322 0324 0326 0.329 0.331 0.333 0.335
1.20 0.429 0432 0435 0.438 0.441 0.444 0.447 0.450

1.25 0.540 0.544 0.547 0.551 0.555 0.558 0.562 0.565
1.30 0.645 0.649 0.653 0.657 0.661 0.665 0.669 0.673
1.35 0.738 0.742 0.746 0.750  0.754 0.758 0.762 0.765
1.40 0.815 0.818 0.822 0.826 0.829 0.833 0.836 0.840
1.45 0.874 0.877 0.880 0.884 0.887 0.889 0.892 0.895
1.50 0918 0.920 0.923 0.925 0.928 0.930 0932 0934
1.55 0.948 0.950 0.952 0.954 0.956 0.957 0.959 0.961
1.60 0969 0.970 0.971 0973 0974 0.975 0.976 0.977
1.65 0.982 0.983 0.984 0984 0.985 0.986 0.987 0.987
1.70 0990 0.990 0.991 0.991 0.992 0.992 0.993 0.993
1.75 0994 0995 0.995 0.995 0.996 0.996 0.996 0.997
1.80 0997 0.997 0.997 0.998 0.998 0.998 0.998 0.998

- 1.85 0998 0.999 0.999 0.999 0.999 0.999 0.999 0.999
1.90 0999 0999 0.999 0.999 0.999 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.15 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.060 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
245 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000

B-42



PROBABILITY OF DEMONSTRATING TECHNICAL REQUIREMENT
WITH 90 PERCENT CONFIDENCE

EXPECTED NUMBER OF FAILURES

M(T)/TR 93 94 95 96 97 98 99 100
1.00 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084
1.05 0.147 0.147 0.148 0.148 0.149 0.149 0.150 0.150
1.10 0.232 0234 0.235 0.236  0.237 0.239 0.240 0.241
1.15 0.337 0339 0.341 0.343 0.345 .0.348 0.350 0.352
1.20 | 0453 0456 0.458 0.461 0.464 0.467 0.470 0.473

- 1.25 0.569 0.573 0.576 0.580 0.583 0.586 0.590 0.593
1.30 0.677 0.681 0.684 0.688  0.692 0.695 0.699 0.702
135 [0.769 0.773  0.776 0.780  0.783 0.787 0.790 0.794
1.40 0.843 0.846 0.849 0.852  0.855 0.858 0.861 0.864
1.45 0.898 0900 0903 . 0905 0.908 0.910 0.913 0.915
1.50 0936 0938 0.940 0942 0.944 0.946 0.948 0.949
1.55 0962 0964 0.965 0.966 - 0.968 0.969 0.970 097
1.60 0978 0.979 0.980 0.981 0.982 0.983 0.983 0.984
1.65 0.988 0.989 0.989 0990 0990 00991 0.991 0.992
1.70 0994 0994 0.994 0.995 0.995 0.995 0.996 0.996
1.75 0.997 - 0997 0.997 0.997 0.998 0.998 0.998 0.998
1.80 0.998 0.998 0.999 0.999  0.999 0.999 0.999 0.999
1.85 0999 0999 0.999 0.999  0.999 1.000 1.000 1.000
1.90 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.00 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000.  1.000
2.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.25 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.40 1.000 1.000 1.000 1.000 -1.000 1.000 1.000 1.000
2.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.55 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.80 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
2.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.90 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
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APPENDIX C
DERIVATIONS

Proposition 1.

fas<c < TRSE}’(fobs)

Proof.

To prove this relation, we use the equation below which follows directly from the
definition of a 100 y percent lower confidence bound when £, failures occur in a demonstration

test of length T}, :

Lot i
ze'T"““/l (ij/f) = 1-y

pary 1!
where
t 4 £,(1,)
Let g be the function of x > 0 defined by the left-hand side of the equation above with ¢ replaced

by x. Note g is a strictly increasing function of x > 0 since g(x) is the probability of obtaining
£, or fewer failures when the constant configuration under test has MTBF x.

L. First we shall show f, <c=>TR<{.

Thus, let f,,, <c. Suppose £ <TR. Then

Fo, i
g)<g(IR) = D eT/™ ME)_

i=0 it
o § e Tul™)
=0 1
< 1~y ’

which is a contradiction since g(¢) =1~ y. Thus, TR<¢.

II. Next weshall show TR<{ = f, <c. Thus,let TR <{¢. Suppose f,, >c. Then
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%e'T""/TR (T, /TR)

l, = g(TR) < g(4) = 1l-y
i=0 L :

Since f,,, > c, this contradicts the definition of ¢ (see Equation (5) in Section 2.1.2).
Thus, f,,, <c.

Proposition 2.

For each a<1, T>0, and M(T)>0, the corresponding distribution function of L, (N,S)
satisfies the inequality

Prob(L,(N,8)<sM(T)) 2 »
Proof.

Let f, denote the density function of W (defined by Equation (20) in Section 2.1.3)
corresponding to a<1, T>0, M(T)>0. By inequality (21) in Section 2.1.3,

Prob(L,(N,S) < M(T))

= T{Prob(L, (N, S;w)< M(T))} £, (w)dw

v

7?fw (w) dw

=7
Proposition 3.
For each a<l, T>0, and M(T)>0,
Prob(Z,(N,S)=x) = 0
for all real x.

Proof.

Let a<l, T>0, and M(T)>0. Clearly, L, (N S ) > 0. Thus, we need to consider x> 0.



Let L, (n,S) denote L, (N, S) conditioned on N =n. As shown in Appendix A of
Reference 7,

M,(T) [/lT'”] )

M(T) 2n® )"

where y? is the chi-square random variable with v degrees of freedom.

Thus,

. 1 AT”
M, (T) ~ (MT,,_,](M}A

L |,
- 2,&12 ZZn

Then, by (12) in Section 2.1.3,

2
oo - (2] ()2

1.€.,

L(ns) ~ (27;-’-)( 5(22; ).] e

sz, (n)x]= .

Thus,

Prob (L,(n, §) = x) = Prob ( L= -

It then follows that,

Prob (Ly (N,S) =x) =

[Prob(v =0)" 3" [Prob(L, (n, )= x)|Prob(¥ = n)

n=1

= (0, since Prob (N=0) > 0.

Proposition 4.
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Type I1 = Prob(TR < L (N,S))<1-y foreach @ <1 and T>0 where M(T)=TR.

Proof.

Let @<l and T>0 with M(T)=TR.

Then

brob(TR <L (N,9))
Prob(L,(N,S)=TR) + ProblTR < L, (v,5))

= Prob(T R<L, (N , S)), by Proposition 3,

=1- Prob(Lr(N, S)< TR) < 1-y, by Proposition 2.

Proposition 5.

For a growth curve with parameters (o, T, M(T)), the expected number of failures (E(N))
can be determined by

T

EN = oM

Proof.

The observed number of failures by test duration t, denoted by N(t), is a non-
homogeneous Poisson process with N(T')= N and intensity function

_ 1
() = MO ALt

This implies that N is Poisson distributed with expected value
T

E(N) = jp(t) dt = AT’
0

By Equation (18) in Section 2.1.3,

Tﬂ

E = -
™ (M(T)) g1
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This yields

ENy = —— = T |
AM(T) (1-a) M(T)

Proposition 6.

For a growth curve with parameters (a, T, M(T)),

Prob (A; o, T, M(T)) =

oM -1 c Z2zn _1_ -4 /un
(1-e™) g[Prob[——zi(n)zzﬂdHe (n!)

~ where A E(N) and d A M(T)/TR .

Proof. -

From (23) in Section 2.1.3 and (34),

Prob(4;@,T,M(T)) = ProblZ, (N,S)>TR)

[1-Prob (N =0)]" i [Prob (Ly (n,S) 2 TR)] Prob (N =n)

n=|

[1 - Prob(N = 0)]” ;{Pr b((?][é{i))zmﬂ Prob (N = n)

RS X - AR _
[1-Prob (N = 0)] ;[Pmb( . 00 > T J:]Prob(N =n)

Letting p A E(N) and d A M(T)/TR,

Prob(4;,T,M(T)) =

s Xan AM(T) wl H
(1-e™) ;[Pmb[——z;(")z(u ( - )[M(T)me (n!)
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APPENDIX D

This appendix utilizes the notation in Section 4.4.
Annex 1
We shall show the following:
(1) E[I,¢) = 1-e*

@) p5;2) f( e )

i=1

(3) h(t;4) = Z/Ze"’"

To show (1) observe that I,(¢) is a random variable that only takes on the values zero and
one. Thus

E[10)] = ()Pr(z()=0)+)Pr(z,()=1)

= Pr(f(r)=1) = 1-e*

To show (2), let M(¢) denote the number of distinct B-modes that occur by t. Then

Thus
ez) = EQ1@) = YEUE) = Yh-)
Note (3) follows from (2) since

) d“”z) Zx

Annex 2

Recall A ~T(e, ). Let ¥ denote the moment generating function for A. Thus, by
definition, ¥(x)= E (e"A ) for all real x for which the expectation with respect to A exists. One
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APPENDIX D

This appendix utilizes the notation 1n Section 4.4.
Annex 1

We shall show the following:
() E[L()] = 1-™

@ uid) = Yl-e)

=1

() hid) = S

I
1=l

To show (1) observe that 7 (¢) is a random variable that only takes on the values zero and
one. Thus

E[L@)] = (©)Pr(2,()=0)+0)Pr(z,()=1)

= Pr(i(t)=1) = 1-e*

To show (2), let M (t) denote the number of distinct B-modes that occur by t. Then

Thus

ult;2)

gE[I, )] = i(l —eH)

=1

Note (3) follows from (2) since

d,utxl)

Wt 2) = Z Ae

Annex 2

Recall A ~T'(a, B). Let ¥ denote the moment generating function for A. Thus, by
definition, P(x)=E (e"A ) for all real x for which the expectation with respect to A exists. One
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can show that ¥ is defined for x <—% and W(x)=(1- 4 )" (see e.g. Mood and Graybill

[9]). We shall utilize ¥(x) to express 4, ,, ut), h(t), plt), and 6(¢) in terms of K and the
gamma parameters « and £F. We summarize our results below:

(1) A = Kpla+)

@ ) = Kfi-a+p0y)
_ Kpla+1) _ du)
&) = 1+ g0 de
@ ple) = 4, +(1-/zd)K,6’(a+1)+./i’_I§_'b)_(a_+_l_)
(1+,5t)a+2

) 6() = 1-(1+pe)y?

B :
To show (1), recall 4, , = E(Z A,.) where A =(A,,"--,A ) is a random sample from

i=1

A. Thus
d%(x)

A
8K dx

]

KEQA) = K

x=0

K fla+1)
‘To demonstrate (2), note by Annex 1

M) = Eluesn)]
E[i (1-e™ )]

= K- E{i e'A"}

i=1

K -KEle™|

Thus
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Kii-£le™

X
.

j —
1

K{l-¥(-1)}

i

= Kp-(+ gy}

To derive (3) we can utilize the expression for h(t; 4) in Annex 1. Doing so we arrive at

h(t)

Efh(r; A)]

E[i Aie"\"}
i=1

K E[Ae™ ]

Note

E[ae™] = %

X =—t

ple+1)
(l+ﬂt)a+2

This yields

K fa+)
h(t) - (1+ﬂt)a+2

Note by (2) above,

dult)  Kpla+1)

dt 1+ o)

Thus, as expected,

L4) ] = Ho

To obtain (4) we recall the expression in (16) of Section 4.4.3 for p(t):

,O(I) = A4, +(1"/‘d)’za.1< T Hy h(t)
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Thus (4) directly follows from (1) and (3) above.

Finally, recall by (23) of Section 4.4.3 we have

ﬁ(t) /iB,K - h(t)

/?’B,K
By (1) and (3) above we note
1
W) = —5—
© (1+ gy
Thus
A
Asx ~ —%
H(t) = (1 + ﬂt)
A’B.K
_ -(a+2)
= 1-(1+p1)
Annex 3

Maximum Likelihood Estimates for AMPM
To obtain maximum likelihood estimates (mle’s) for our finite K and NHPP variants of

the AMPM, assume m distinct B-modes first occur at test times 0<¢, <t, <---<¢_ respectively
over a test period of length T. Let n, denote the number of A-mode failures that occur over test
period T. We shall denote an estimate of a model parameter by placing the symbol “*” over the

parameter. Thus, e.g., A« =n, /T since 4, is constant over test period T.

Let ¢ be the vector of B-mode first occurrence times (¢,,-+,¢, ). Also, let (K ) denote
the set of positive integers less than or equal to K and let S, denote the set of all subsets of (K)
of size m. Then, conditioned on A = A, the likelihood function for the test data (m,¢) is
L(m,t; A) where

L(m,1; 2) =m!Z{l’[4e“"f l‘Ie‘”} W

SeS,| ieS ie(K)~S

The summation in (1) is over all the mutually exclusive sets of exactly m distinct B-modes that
can occur at first occurrence times (z,,-+,¢, ).
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Consider the corresponding likelihood random variable

SeS,| ieS

L(im,t;A) = m! ZI:HA,. e M He‘A’TJ
ie(K)-$

where A = (A, ..., Ag) is a random sample from I'(e, ). Denote the expected value of
L (m, t; A) with respect to A by L (m, t). Since the A; are independent and identically
distributed fori=1, ..., K we have

L(m,t)= m!(:j lI,fIl E (Ae"“i ) [E (e'/\r ):r(-m (2)

where A~ T («, f). We wish to find the point (, ) that maximizes L(m, t). We shall denote

these values of & and f by ax and f, , respectively.

By direct calculation of E[A‘”e""], recalling the form of density function f, given in
Section 4.4.2, we can show

| g
Elnen] - a!(gjg)fw ‘ 3)

for u< " and p > —(1+a). From (2) and (3) we obtain

Lm) - K(K-l)---(K-mn)[(l e ,n)}flnm @

Let Z =In{L(m,t)}. Then it follows that

g_i_ = T~ (K -m)in(1+ A7)~ zmu/n (5)

and

2z _nl_(a+1)(K—m)T_(a+2)i ©)

4
op s 1+ 4T o 1+

Treating K as a positive real number we also obtain
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Zi mzo————-(a+l)ln(l+ﬂT) (7)

In Section 4.4 and this appendix we shall not use (7) since we are only interested in

obtaining «, , f, interms of K and the test data. We shall then hold the test data constant and
let X — oo to study the limiting behavior of our AMPM estimators. Let v, A (a' 4,K) and

174 _A_(ax, P K j Then by (5) our maximum likelihood equation for « is

N -1 A m p
oz ~o= 0 & (mﬁl) = m Kln(l+ﬂKT)—Zln -1—+——ﬂiz ®
Ja Vg =V i=l 1+ f ¢,
By (6) our maximum likelihood equation for £ is
m _i L
~ i=1
Q_Z_ N = 0 & ax+l = ﬂK lm+ ﬂK fi (9)
0p\v, =vk (K—m)T+Z t,

1+, T #1481,

A

-1 .
Equating the expressions for (a‘x + lj obtained from (8) and (9) we arrive at a linear equation

for K. Solving for K we obtain

1+/3 -1 m,B o Tt
Yin-TLEL Y =2
PG 4Bt T4 fet, 1+ 8. T =1+ 8.t

ln(1+ﬂKT]Z LR mAﬂ" T
T4 fot 148, T

(10)

For a given K and data set (m,t) generated over test period T we can solve (10) for 3, .

Then we can use either (8) or (9) to obtain a«. Using (a/ £, 0. K ) we can estimate all our

finite K AMPM prOJectlon quantities where /l,a = 4 and pgq is assessed as



4 = 1y (11)

In (11), d; will often be based largely on engineering judgement. The value of d;

should reflect several considerations: (1) how certain we are that the problem has been correctly
identified; (2) the nature of the fix, e.g., its complexity; (3) past FEF experience and (4) any
germane testing (including assembly level testing).

In practice, we do not know the value of K. We could try to develop an mle for K based

~ A a

on (7) or by directly maximizing Z. We have found that a solution (a, B, K ) to the maximum

likelihood equations (5), (6) and (7) can be a saddle point of L(m,g). This can occur even for a
large data set that appears to fit the model well. We present graphs in Section 4.4.6 for such a
data set that clearly illustrate the difficulty in obtaining a reasonable estimate for K. Thus we
prefer to take the point of view that we should not attempt to assess K. However, by conducting
a standard failure modes and effects criticality analysis (FMECA), we can place a lower bound -
onK, say K,. Our experience with the AMPM is that if K is substantially higher than m , say,

e.g., K 210m, then our AMPM projection quantities will be insensitive to the value of K. We
believe for a complex system or subsystem it will often be the case that K, 210m or at least the

unknown value of K will be 10m or higher. The factor of 10 may be larger than necessary. In
practice, we suggest exercising the AMPM model with several plausible lower bound values for
K and comparing the associated projections with those obtained in the limit as K — . This is
illustrated for a data set in Section 4.4.6.

We shall now consider the behavior of our AMPM estimators as K — . To do so, let
< ﬂK> be a sequence satisfying (10) with limit /_ e [O,oo). We shall assume that such a
d K>m ’
sequence exists for our data set (m,t) generated over [O,T ] Then by (10) we have
= 1 mpg.T

ln(l + ,éw T) > -

> = 0 (12)
=1+ gt 1+ 4T

Recall by Annex 2, 4, , =K Al +1), where we previously suppressed the subscript K.

Kb(ém) (13)

Thus we sﬁall define Az« by

Az«

i &>

By (8) we obtain



Asx = Kﬂk(g,ﬁ.l) = Kmpg, _ (14)
Kln(1+ﬂKT)—zln1+'?KT
LR T+ Bt

Taking the limit in (14) as K — o we arrive at:

A

mp,

7 (15)
ln(l + /5, TJ

Ao A limAsk =

= K—wx

provided #_>0. If #_ =0, then we can show, By applying L’Hospital’s rule, that the limit of
the right hand side of (10) goes to a finite positive number as K — o. This contradiction

establishes that £, >0. Since K ,BK(aKHJ — Asw € (0,) as K — 0 and 4, € (0,00), we

obtain

~ A

@ = lima, = -1 (16)

K->

We can now obtain our limiting AMPM estimates as K — «. We first numerically solve

(12) for £, and then obtain As3. from (15). From (16), the value of @« is ~1. To go from the

finite K AMPM estimate to the associated limiting estimate, we first consider A, (t) given by (3)
in Annex 2, where we have suppressed the subscript K. Motivated by (3), we define

A K:Aﬁx(a""'l)

he(t) A —————2 (17)
= N ak +2

(1+ﬂKt)-
Then

. . . 23,@

ho(t) A limhx(t) = : (18)
= e 1+ Bt

From (2) in Annex 2, we define
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) A Kl—(ubxt)_(w]

We can obtain z_(¢) more readily from (18) than from (19).

[N

A

Ha(t)

1>

K- K—»wo OK._W’

NS SR
0 (1 + L, x) A ‘

From (20), we can see that Equation (15) simply says

u (1) = m

In accordance with (5) in Annex 2, we define

A A -:zx+2
x(r) A 1—(1+ﬂ,(z)( )
Then
Py ~ N -1 )
Ba(2) A }im@x = 1—(1+ﬂwt) = —éft—-

1+ 4t

Finally, from (4) in Annex 2, we define

K ﬂK(aK + 1)
A I;K +2

(1 + f t)

From (24) we have

D-11

(19)

fim g () = lim [hc()dx = ]lim e (x)dx

(20)

(21)

(22)

(23)

(24)



p(t) A limp () = ﬂm{l—#; ]/Ala.ww; fo (25)

Recall in Section 4.4.4 we showed our finite K AMPM converged to a NHPP in the sense that
the process {X,(¢),0<¢ <o} converged to the NHPP {X L), 0<t <0} as K > 0. Wealso
noted that {X - (t), 0<t< oo} has the mean value function (t) given in (4.4.4). We could

directly derive parameter estimators for this NHPP. By so doing, one can show that these
estimators are identical to the limiting AMPM estimators.
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